A parametrization of all one parameter stabilizing controllers and a mixed sensitivity problem, for square systems

被引:0
作者
Galindo, R. [1 ]
Conejo, C. D. [2 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Elect & Mech Engn, Av Univ S-N, San Nicolas De Los Garza, Nuevo Leon, Mexico
[2] Autonomous Univ Nuevo Leon, Fac Elect & Mech Engn, San Nicolas De Los Garza, Nuevo Leon, Mexico
来源
2012 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE) | 2012年
关键词
Parametrization of one stabilizing controllers; mixed sensitivity; separation principle; duality; strong stabilization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explicit formulas of the Parametrization of All one parameter Stabilizing Controllers (PASC) for square systems, are presented. Multi Input Multi Output (MIMO), strictly proper, lumped and Linear Time Invariant (LTI) systems with stabilizable and detectable realizations are considered. It is assumed that the state dimension is even, the input dimension is half the state dimension, and the plant is strongly stabilizable and detectable. The separation principle is applied to design a dynamic output control in a controller-observer feedback configuration. The results for the observer are gotten by duality. For both controller and observer, right and left coprime factorizations of the transfer function in terms of the state space realization are proposed, right and left Diophantine equations are solved, and the controller and observer belong to the PASC. Conditions to get strong stability are given and the free parameters of the stabilizing controllers are fixed solving a MIxed Sensitivity Problem (MISP). The results are illustrated through a simulation example of a two-cart system.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] [Anonymous], 1979, Discrete Linear Control: The Polynomial Equation Approach
  • [2] Bongiorno J. J, 1974, AUTOMATICA, P159
  • [3] H∞ strong stabilization
    Campos-Delgado, DU
    Zhou, KM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) : 1968 - 1972
  • [4] Chen C.-T., 1999, LINEAR SYSTEM THEORY
  • [5] CHIANG RY, 1992, MATLAB ROBUST CONTRO
  • [6] DESOER CA, 1980, TAC, V25, P399
  • [7] Galindo R., 2009, Proc IMechE, Part I: J Syst Control Engineering, V223, P957
  • [8] Galindo R, 2008, INT J FACTORY AUTOMA, V2, P141
  • [9] Galindo R, 2008, INT J FACTORY AUTOMA, V2, P15
  • [10] Horowitz IM., 2013, SYNTHESIS FEEDBACK S