Growth of epitaxial SiGe nanostructures at low temperature on Si(100) using hot-wire assisted gas source molecular beam epitaxy

被引:12
|
作者
Chelly, R
Werckmann, J
Angot, T
Louis, P
Bolmont, D
Koulmann, JJ
机构
[1] UNIV HAUTE ALSACE,URA CNRS 1435,LAB PHYS & SPECT ELECT,F-68093 MULHOUSE,FRANCE
[2] INST PHYS & CHIM MAT STRASBOURG,GRP SURFACES INTERFACES,UMR CNRS 46,F-67037 STRASBOURG,FRANCE
关键词
growth mechanism; nanostructures; molecular beam epitaxy; silicon; germanium;
D O I
10.1016/S0040-6090(96)09299-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ge/Si and Si1-xGex nanostructures were grown on Si(100) at 350 degrees C substrate temperature with a significant growth rate of about 10 Angstrom min(-1) using hot-wire decomposition of disilane and germane in an ultrahigh vacuum environment, A quartz crystal microbalance (QCM) was used to monitor growth rates and to study the influence of feed gas pressures. In-situ X-ray photoelectron spectroscopy measurements allowed us to calibrate alloy stoichiometry monitored by QCM. Ex-situ high-resolution transmission electron microscopy observations demonstrated the 2D epitaxial growth of partly relaxed nanolayers. These promising results may be closely related to a surfactant-like role of atomic hydrogen, which appears as a beneficial sub-product of the hot-wire decomposition process of hydride sources. (C) 1997 Elsevier Science S.A.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 50 条
  • [31] Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications
    Aggarwal, V.
    Ramesh, C.
    Tyagi, P.
    Gautam, S.
    Sharma, A.
    Husale, Sudhir
    Kumar, M. Senthil
    Kushvaha, S. S.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 125
  • [32] Growth of epitaxial ZnO films on Si (111) substrates with Cr compound buffer layer by plasma-assisted molecular beam epitaxy
    Kim, Jung-Hyun
    Han, Seok Kyu
    Hong, Soon-Ku
    Lee, Jae Wook
    Lee, Jeong Yong
    Song, Jung-Hoon
    Hong, Sun Ig
    Yao, Takafumi
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (15) : 2190 - 2195
  • [33] Low temperature growth of Si:Ce thin films with high crystallinity and uniform distribution of Ce grown by solid-source molecular beam epitaxy
    Terao, Takemi
    Nishimura, Yoshihiro
    Shindo, Daisuke
    Fujimura, Norifumi
    JOURNAL OF CRYSTAL GROWTH, 2007, 307 (01) : 30 - 34
  • [34] GAS SOURCE MOLECULAR-BEAM EPITAXY GROWTH OF HIGH-QUALITY ALGAAS USING TRIMETHYLAMINE ALANE AS THE ALUMINUM SOURCE
    OKAMOTO, N
    ANDO, H
    SANDHU, A
    FUJII, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (12B): : 3792 - 3795
  • [35] Growth of GaP and AlGaP on GaP(111) B using gas-source molecular-beam-epitaxy
    Barakat, J. -B.
    Dadgostar, S.
    Hestroffer, K.
    Bierwagen, O.
    Trampert, A.
    Hatami, F.
    JOURNAL OF CRYSTAL GROWTH, 2017, 477 : 91 - 96
  • [36] Analysis of growth on 75 mm Si (100) wafers by molecular beam epitaxy using in vacuo scanning tunneling microscopy
    Jernigan, GG
    Thompson, PE
    Twigg, ME
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 89 (1-3): : 133 - 140
  • [37] Mechanism of selective area growth of InP on Si(001) substrates using SiO2 mask by gas-source molecular beam epitaxy
    Hasegawa, S.
    Shimoi, T.
    Asahi, H.
    JOURNAL OF CRYSTAL GROWTH, 2013, 378 : 47 - 49
  • [38] In situ study of low-temperature growth and Mn, Si, Sn doping of GaAs (001) in molecular beam epitaxy
    Pristovsek, M
    Tsukamoto, S
    JOURNAL OF CRYSTAL GROWTH, 2004, 265 (3-4) : 425 - 433
  • [39] UNDOPED SILICON LAYERS GROWN BY GAS SOURCE MOLECULAR-BEAM EPITAXY USING SI2H6
    YOSHINOBU, T
    FUYUKI, T
    MATSUNAMI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1992, 31 (9A): : L1213 - L1215
  • [40] Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy
    Kuang, Y. J.
    Sukrittanon, S.
    Li, H.
    Tu, C. W.
    APPLIED PHYSICS LETTERS, 2012, 100 (05)