A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems

被引:22
作者
Sopuerta, CF [1 ]
Sun, PT
Laguna, P
Xu, JC
机构
[1] Penn State Univ, Inst Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[5] Penn State Univ, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
[6] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
D O I
10.1088/0264-9381/23/1/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Extreme-mass-ratio binary systems, binaries involving stellar mass objects orbiting massive black holes, are considered to be a primary source of gravitational radiation to be detected by the space-based interferometer LISA. The numerical modelling of these binary systems is extremely challenging because the scales involved expand over several orders of magnitude. One needs to handle large wavelength scales comparable to the size of the massive black hole and, at the same time, to resolve the scales in the vicinity of the small companion where radiation reaction effects play a crucial role. Adaptive finite element methods, in which quantitative control of errors is achieved automatically by finite element mesh adaptivity based on a posteriori error estimation, are a natural choice that has great potential for achieving the high level of adaptivity required in these simulations. To demonstrate this, we present the results of simulations of a toy model, consisting of a point-like source orbiting a black hole under the action of a scalar gravitational field.
引用
收藏
页码:251 / 285
页数:35
相关论文
共 73 条
[1]   Nonreflecting boundary conditions for the time-dependent wave equation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (01) :270-296
[2]   Rapid evaluation of nonreflecting boundary kernels or time-domain wave propagation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1138-1164
[3]  
[Anonymous], AM ASTR SOC M
[4]  
[Anonymous], 2001, FINITE ELEMENT METHO
[5]  
[Anonymous], 1977, Mathematical Software, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X, DOI 10.1016/B978-0-12-587260-7.50011-X2]
[6]  
ARNOLD DN, 1998, NUMERICAL ANAL, P1
[7]  
BANK R, IN PRESS J NUMER ANA
[8]   Mesh smoothing using a posteriori error estimates [J].
Bank, RE ;
Smith, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :979-997
[9]  
BANK RE, 2003, SCI COMPUTING
[10]   LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy [J].
Barack, L ;
Cutler, C .
PHYSICAL REVIEW D, 2004, 69 (08) :24