Large global well-posedness of the three-dimensional magneto-hydrodynamic equations with the initial data of the type 'v+w'

被引:0
|
作者
Han, Jinsheng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
美国国家科学基金会;
关键词
3D incompressible magneto-hydrodynamic equations; global well-posedness; NAVIER-STOKES EQUATIONS; REGULARITY; WELLPOSEDNESS;
D O I
10.1002/mma.2634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of the three-dimensional, incompressible magneto-hydrodynamic equations with full velocity dissipation and magnetic diffusion. We prove the global well-posedness of the magneto-hydrodynamic equations due to some particular initial data of the type v?+?w, which may be large in the corresponding critical space. We provide two kinds of results, and they do not contain each other. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:2036 / 2056
页数:21
相关论文
共 50 条