Df31 Protein and snoRNAs Maintain Accessible Higher-Order Structures of Chromatin

被引:90
作者
Schubert, Thomas [1 ]
Pusch, Miriam Caroline [2 ,3 ]
Diermeier, Sarah [1 ]
Benes, Vladimir [4 ]
Kremmer, Elisabeth [5 ]
Imhof, Axel [2 ,3 ]
Laengst, Gernot [1 ]
机构
[1] Univ Regensburg, Inst Biochem 3, D-93053 Regensburg, Germany
[2] Univ Munich, Adolf Butenandt Inst, D-80333 Munich, Germany
[3] Univ Munich, Munich Ctr Integrated Prot Sci CIPS, D-80333 Munich, Germany
[4] EMBL, GeneCore, D-69126 Heidelberg, Germany
[5] Helmholtz Zentrum Munchen, Inst Mol Immunol, D-85764 Munich, Germany
关键词
HISTONE MODIFICATION; BOX C/D; RNA; COMPONENT; DNA; TRANSCRIPTION; BINDING; WORLD;
D O I
10.1016/j.molcel.2012.08.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Packaging of DNA into nucleosomes and the formation of higher-order chromatin structures determine DNA accessibility and activity of genome domains. We identified an RNA-dependent mechanism maintaining the open chromatin structure within euchromatic regions in Drosophila cells. The mechanism of reversible chromatin opening, reconstituted in vitro, depends on the Drosophila decondensation factor 31 (Df31) that specifically binds to RNA and localizes to euchromatic regions. Df31 is capable to tether a heterogeneous pool of short, single-stranded RNAs to chromatin. This class of chromatin-associated RNA (caRNA) is stably linked to chromatin and is largely composed of snoRNAs, which are preferentially bound by Df31. We suggest that the Df31-mediated linkage of snoRNAs and chromatin, forms a RNA-chromatin network resulting in the establishment of open chromatin domains. Analysis of caRNAs in human cells also reveals a strong enrichment of snoRNAs, implying a conserved role for these molecules in higher-order structures of chromatin.
引用
收藏
页码:434 / 444
页数:11
相关论文
共 33 条
  • [1] Optical Thermophoresis for Quantifying the Buffer Dependence of Aptamer Binding
    Baaske, Philipp
    Wienken, Christoph J.
    Reineck, Philipp
    Duhr, Stefan
    Braun, Dieter
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) : 2238 - 2241
  • [2] The expanding snoRNA world
    Bachellerie, JP
    Cavaillé, J
    Hüttenhofer, A
    [J]. BIOCHIMIE, 2002, 84 (08) : 775 - 790
  • [3] CELL-FREE SYSTEM FOR ASSEMBLY OF TRANSCRIPTIONALLY REPRESSED CHROMATIN FROM DROSOPHILA EMBRYOS
    BECKER, PB
    WU, C
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (05) : 2241 - 2249
  • [4] MOLECULAR COMPLEMENTARITY BETWEEN NUCLEAR DNA AND ORGAN-SPECIFIC CHROMOSOMAL RNA
    BONNER, J
    WIDHOLM, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1967, 57 (05) : 1379 - &
  • [5] CHROMATIN-ASSOCIATED RNA - DIFFERENTIAL EXTRACTION AND CHARACTERIZATION
    BYNUM, JW
    VOLKIN, E
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 607 (02) : 304 - 318
  • [6] Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin
    Catez, F
    Yang, H
    Tracey, KJ
    Reeves, R
    Misteli, T
    Bustin, M
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (10) : 4321 - 4328
  • [7] Coding RNAs with a non-coding function Maintenance of open chromatin structure
    Caudron-Herger, Maiwen
    Mueller-Ott, Katharina
    Mallm, Jan-Philipp
    Marth, Caroline
    Schmidt, Ute
    Fejes-Toth, Katalin
    Rippe, Karsten
    [J]. NUCLEUS, 2011, 2 (05) : 410 - 424
  • [8] X inactivation and the complexities of silencing a sex chromosome
    Chow, Jennifer
    Heard, Edith
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2009, 21 (03) : 359 - 366
  • [9] Crevel G, 2001, J CELL SCI, V114, P37
  • [10] Chromatin fiber folding: Requirement for the histone H4N-terminal tail
    Dorigo, B
    Schalch, T
    Bystricky, K
    Richmond, TJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (01) : 85 - 96