Urban Computing Leveraging Location-Based Social Network Data: A Survey

被引:67
作者
Silva, Thiago H. [1 ]
Viana, Aline Carneiro [2 ]
Benevenuto, Fabricio [3 ]
Villas, Leandro [4 ]
Salles, Juliana [5 ]
Loureiro, Antonio [3 ]
Quercia, Daniele [6 ]
机构
[1] Univ Tecnol Fed Parana, Informat, Av Sete Setembro 3165, BR-80230901 Curitiba, Parana, Brazil
[2] Inria, 1 Rue Honore dEstienne dOrves, F-91120 Palaiseau, France
[3] Univ Fed Minas Gerais, Comp Sci, Predio ICEx Pampulha, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
[4] Univ Estadual Campinas, Comp Sci, Av Albert Einstein,1251 Cidade Univ, Campinas, SP, Brazil
[5] Microsoft Res, 14820 NE 36th St,Bldg 99, Redmond, WA 98052 USA
[6] Bell Labs, Broers Bldg 21 JJ,Thomson Ave, Cambridge CB3 0FA, England
关键词
Urban computing; urban informatics; location-based social networks; big data; urban sensing; city dynamics; urban societies; LARGE-SCALE; HUMAN MOBILITY; SPACE; INFORMATION; TIME; PREDICTABILITY; POLLUTION;
D O I
10.1145/3301284
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Urban computing is an emerging area of investigation in which researchers study cities using digital data. Location-Based Social Networks (LBSNs) generate one specific type of digital data that offers unprecedented geographic and temporal resolutions. We discuss fundamental concepts of urban computing leveraging LBSN data and present a survey of recent urban computing studies that make use of LBSN data. We also point out the opportunities and challenges that those studies open.
引用
收藏
页数:39
相关论文
共 165 条
[1]  
Abel F, 2011, LECT NOTES COMPUT SC, V6644, P375, DOI 10.1007/978-3-642-21064-8_26
[2]  
Aggarwal C.C., 2012, Mining Text Data, P1, DOI [DOI 10.1007/978-1-4614-3223-4_4, 10.1007/978-1-4614-3223-4, DOI 10.1007/978-1-4614-3223-4]
[3]   Mining urban recurrent congestion evolution patterns from GPS-equipped vehicle mobility data [J].
An, Shi ;
Yang, Haiqiang ;
Wang, Jian ;
Cui, Na ;
Cui, Jianxun .
INFORMATION SCIENCES, 2016, 373 :515-526
[4]   Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns [J].
Andrienko, G. ;
Andrienko, N. ;
Bremm, S. ;
Schreck, T. ;
von Landesberger, T. ;
Bak, P. ;
Keim, D. .
COMPUTER GRAPHICS FORUM, 2010, 29 (03) :913-922
[5]   Space, time and visual analytics [J].
Andrienko, Gennady ;
Andrienko, Natalia ;
Demsar, Urska ;
Dransch, Doris ;
Dykes, Jason ;
Fabrikant, Sara Irina ;
Jern, Mikael ;
Kraak, Menno-Jan ;
Schumann, Heidrun ;
Tominski, Christian .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010, 24 (10) :1577-1600
[6]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[7]  
[Anonymous], 2011, INT C INF KNOWL MAN, DOI DOI 10.1145/2063576.2063724
[8]  
[Anonymous], 2006, Participatory sensing. pages, DOI [10.1109/MIC.2010.12, DOI 10.1109/MIC.2010.12]
[9]   User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks [J].
Arcaini, Paolo ;
Bordogna, Gloria ;
Ienco, Dino ;
Sterlacchini, Simone .
INFORMATION SCIENCES, 2016, 340 :122-143
[10]   Demographics, Weather and Online Reviews: A Study of Restaurant Recommendations [J].
Bakhshi, Saeideh ;
Kanuparthy, Partha ;
Gilbert, Eric .
WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, :443-453