Besov regularity for operator equations on patchwise smooth manifolds

被引:12
作者
Dahlke, Stephan [1 ]
Weimar, Markus [1 ]
机构
[1] Univ Marburg, Fac Math & Comp Sci, Workgrp Numer & Optimizat, D-35032 Marburg, Germany
关键词
Besov spaces; Weighted Sobolev spaces; Wavelets; Adaptive methods; Nonlinear approximation; Integral equations; Double layer; Regularity; Manifolds; ADAPTIVE WAVELET METHODS; TRIEBEL-LIZORKIN SPACES; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; ELEMENT METHOD; BASES; APPROXIMATION; INTERPOLATION; SCHEMES;
D O I
10.1007/s10208-015-9273-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study regularity properties of solutions to operator equations on patchwise smooth manifolds partial derivative Omega, e.g., boundaries of polyhedral domains Omega subset of R-3. Using suitable biorthogonal wavelet bases Psi, we introduce a new class of Besov-type spaces B-Psi,q(alpha) (L-p(partial derivative Omega)) of functions u : partial derivative Omega -> C. Special attention is paid on the rate of convergence for best n-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on partial derivative Omega into B-Psi,tau(alpha) (L-tau(partial derivative Omega)), 1/tau = alpha/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double-layer ansatz for Dirichlet problems for Laplace's equation in Omega.
引用
收藏
页码:1533 / 1569
页数:37
相关论文
共 53 条
[1]  
[Anonymous], 1996, De Gruyter Series in Nonlinear Analysis and Applications
[2]  
[Anonymous], 1998, MULTISKALEN WAVELET
[3]  
[Anonymous], 1992, Appl. Anal, DOI DOI 10.1080/00036819208840092
[4]   Adaptive wavelet schemes for elliptic problems implementation and numerical experiments [J].
Barinka, A ;
Barsch, T ;
Charton, P ;
Cohen, A ;
Dahlke, S ;
Dahmen, W ;
Urban, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :910-939
[5]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[6]   The wavelet element method - Part II. Realization and additional features in 2D and 3D [J].
Canuto, C ;
Tabacco, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :123-165
[7]   The Wavelet Element Method part I. Construction and analysis [J].
Canuto, C ;
Tabacco, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (01) :1-52
[8]   Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains [J].
Cioica, Petru A. ;
Dahlke, Stephan ;
Kinzel, Stefan ;
Lindner, Felix ;
Raasch, Thorsten ;
Ritter, Klaus ;
Schilling, Rene L. .
STUDIA MATHEMATICA, 2011, 207 (03) :197-234
[9]  
Cohen A, 2000, NUMER MATH, V86, P193, DOI 10.1007/s002110000158
[10]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7