A slice-wise latent structure regression method for the analysis of functional magnetic resonance imaging data

被引:1
|
作者
Ahmad, Fayyaz [1 ]
Chaudhary, Safee Ullah [2 ]
Kim, Sung-Ho [3 ]
Park, Hyunwook [4 ]
机构
[1] Quaid I Azam Univ Islamabad, Dept Stat, Islamabad 45320, Pakistan
[2] COMSATS Inst Informat Technol, Dept Comp Sci, Lahore, Pakistan
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
GLS; PCR; LSR; fMRI; statistical parametric mapping; RIDGE-REGRESSION; FMRI DATA; PREDICTION; PROJECTION;
D O I
10.1002/cmr.a.21270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a novel slice-wise latent structure regression (LSR) method for the analysis of functional magnetic resonance imaging (fMRI) data instead of the conventional voxel-wise generalized least squares (GLS) method. LSR method is designed for application to data sets from slices where fMRI responses (voxels Y-* of a slice) are highly correlated with the design matrix X-*. Also, we compared the performances of LSR, principal component regression (PCR), and GLS methods in terms of model parameters using experimental fMRI data. The LSR method exhibits an enhanced predictive ability and model coefficients as compared to the PCR and GLS methods. (c) 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 130-139, 2013.
引用
收藏
页码:130 / 139
页数:10
相关论文
共 50 条
  • [41] Setup and data analysis for functional magnetic resonance imaging of awake cat visual cortex
    Ma, Manxiu
    Qian, Chencan
    Li, Yanxia
    Zuo, Zhentao
    Liu, Zuxiang
    NEUROSCIENCE BULLETIN, 2013, 29 (05) : 588 - 602
  • [42] Statistical analysis of functional magnetic resonance imaging data: current state and recent developments
    Brammer, M
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2003, 12 (05) : 373 - 374
  • [43] Technical Considerations for Functional Magnetic Resonance Imaging Analysis
    Conklin, Chris J.
    Faro, Scott H.
    Mohamed, Feroze B.
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2014, 24 (04) : 695 - +
  • [44] Software Tools for the Analysis of Functional Magnetic Resonance Imaging
    Behroozi, Mehdi
    Daliri, Mohammad Reza
    BASIC AND CLINICAL NEUROSCIENCE, 2012, 3 (05) : 71 - 83
  • [45] Analysis of functional magnetic resonance imaging in Python']Python
    Millman, K. Jarrod
    Brett, Matthew
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 52 - 55
  • [46] Simple mathematical model for functional magnetic resonance imaging data
    Ouda, BK
    Tawfik, BS
    Youssef, ABM
    MEDICAL IMAGING 2002: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 2002, 4683 : 386 - 396
  • [47] Functional Magnetic Resonance Imaging Data Manipulation - A new approach
    Soares, J.
    Alves, V.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 5, 2009, 25 : 36 - 39
  • [48] A method to analyze low signal-to-noise ratio functional magnetic resonance imaging data
    Zhu, Xi
    Kayali, M. Amin
    Jansen, Ben H.
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2015, 14 (03) : 325 - 342
  • [49] Perception of Difficulty Using Functional Magnetic Resonance Imaging Data
    Ahmad, Fayyaz
    Talib, Bushra
    Ch, Safee Ullah
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2019), 2019, : 37 - 40
  • [50] INVERSE REGRESSION METHOD IN DATA STRUCTURE ANALYSIS
    朱力行
    安鸿志
    Acta Mathematicae Applicatae Sinica(English Series), 1991, (04) : 344 - 353