A slice-wise latent structure regression method for the analysis of functional magnetic resonance imaging data

被引:1
|
作者
Ahmad, Fayyaz [1 ]
Chaudhary, Safee Ullah [2 ]
Kim, Sung-Ho [3 ]
Park, Hyunwook [4 ]
机构
[1] Quaid I Azam Univ Islamabad, Dept Stat, Islamabad 45320, Pakistan
[2] COMSATS Inst Informat Technol, Dept Comp Sci, Lahore, Pakistan
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
GLS; PCR; LSR; fMRI; statistical parametric mapping; RIDGE-REGRESSION; FMRI DATA; PREDICTION; PROJECTION;
D O I
10.1002/cmr.a.21270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a novel slice-wise latent structure regression (LSR) method for the analysis of functional magnetic resonance imaging (fMRI) data instead of the conventional voxel-wise generalized least squares (GLS) method. LSR method is designed for application to data sets from slices where fMRI responses (voxels Y-* of a slice) are highly correlated with the design matrix X-*. Also, we compared the performances of LSR, principal component regression (PCR), and GLS methods in terms of model parameters using experimental fMRI data. The LSR method exhibits an enhanced predictive ability and model coefficients as compared to the PCR and GLS methods. (c) 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 130-139, 2013.
引用
收藏
页码:130 / 139
页数:10
相关论文
共 50 条
  • [21] Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method
    Adolf, Daniela
    Weston, Snezhana
    Baecke, Sebastian
    Luchtmann, Michael
    Bernarding, Johannes
    Kropf, Siegfried
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [22] An optimal independent component analysis approach for functional magnetic resonance Imaging data
    Zhang, Nan
    Yu, Xianchuan
    Ding, Guosheng
    IIH-MSP: 2006 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2006, : 163 - +
  • [23] Adaptive denoising technique for robust analysis of functional magnetic resonance imaging data
    Ouda, BK
    Tawfik, BM
    Youssef, ABM
    Kadah, YM
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 2476 - 2479
  • [24] Box-Jenkins intervention analysis of functional magnetic resonance imaging data
    Tagaris, GA
    Richter, W
    Kim, SG
    Georgopoulos, AP
    NEUROSCIENCE RESEARCH, 1997, 27 (03) : 289 - 294
  • [25] Functional magnetic resonance imaging data analysis with information-theoretic approaches
    Zhao, Q
    Principe, J
    Fitzsimmons, J
    Bradley, M
    Lang, P
    BIOCOMPUTING, 2002, 1 : 159 - 173
  • [26] Regularization of Voxelwise Autoregressive Model for Analysis of Functional Magnetic Resonance Imaging Data
    Ahmad, Fayyaz
    Maqbool, M.
    Lee, Namgil
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2011, 38A (05) : 187 - 196
  • [27] The impact of denoising on independent component analysis of functional magnetic resonance imaging data
    Pignat, Jean Michel
    Koval, Oleksiy
    Van De Ville, Dimitri
    Voloshynovskiy, Sviatoslav
    Michel, Christoph
    Pun, Thierry
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 213 (01) : 105 - 122
  • [28] Item analysis in functional magnetic resonance imaging
    Bedny, Marina
    Aguirre, Geoffrey K.
    Thompson-Schill, Sharon L.
    NEUROIMAGE, 2007, 35 (03) : 1093 - 1102
  • [29] Functional magnetic resonance imaging (fMRI). Part 2: Data analysis and applications
    Schad, LR
    RADIOLOGE, 2002, 42 (09): : 756 - 764
  • [30] Spatially filtering functional magnetic resonance imaging data
    Lowe, MJ
    Sorenson, JA
    MAGNETIC RESONANCE IN MEDICINE, 1997, 37 (05) : 723 - 729