Isotonic regression meets LASSO

被引:4
作者
Neykov, Matey [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 01期
关键词
Monotone single index models; isotonic regression; LASSO; sparsity; high dimensional statistics; LEAST-SQUARES; OPTIMAL RATES; INDEX MODELS; RISK BOUNDS; SELECTION;
D O I
10.1214/19-EJS1537
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies a two step procedure for monotone increasing additive single index models with Gaussian designs. The proposed procedure is simple, easy to implement with existing software, and consists of consecutively applying LASSO and isotonic regression. Aside from formalizing this procedure, we provide theoretical guarantees regarding its performance: 1) we show that our procedure controls the in-sample squared error; 2) we demonstrate that one can use the procedure for predicting new observations, by showing that the absolute prediction error can be controlled with high-probability. Our bounds show a tradeoff of two rates: the mini-max rate for estimating high dimensional quadratic loss, and the minimax nonparametric rate for estimating a monotone increasing function.
引用
收藏
页码:710 / 746
页数:37
相关论文
共 45 条
  • [1] Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order
    Adamczak, Radoslaw
    Wolff, Pawel
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (3-4) : 531 - 586
  • [2] Alquier P, 2013, J MACH LEARN RES, V14, P243
  • [3] [Anonymous], 2015, ARXIV151104514
  • [4] [Anonymous], 1989, GEN LINEAR MODELS
  • [5] [Anonymous], 2010, ARXIV10113027
  • [6] Balabdaoui Fadoua, 2016, ARXIV161006026
  • [7] Bellec Pierre C, 2015, ARXIV151008029
  • [8] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [9] Boucheron S., 2013, Concentration inequalities: A nonasymptotic theory of independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
  • [10] A NEW PERSPECTIVE ON LEAST SQUARES UNDER CONVEX CONSTRAINT
    Chatterjee, Sourav
    [J]. ANNALS OF STATISTICS, 2014, 42 (06) : 2340 - 2381