Active Power Imbalance Detection, Size and Location Estimation Using Limited PMU Measurements

被引:49
作者
Shams, Negar [1 ]
Wall, Peter [1 ]
Terzija, Vladimir [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Disturbance size; disturbance location; disturbance detection; inertia; frequency control; DISTURBANCE; PROTECTION; SYSTEMS; INERTIA; WIND; TIME;
D O I
10.1109/TPWRS.2018.2872868
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reduced system inertia decreases the time available for control actions to prevent the system frequency from violating security limits after a disturbance. Therefore, as system inertia is reduced by the shift toward renewable generation that provides little or no inertia, system operators must deploy faster frequency control actions if they are to preserve security and quality of supply. Realising methods for the fast and accurate detection, localization and sizing of an active power disturbance (e.g., the loss/connection of a large generator or load) will be a crucial enabler for the successful implementation of these faster actions. This paper presents a novel method that can simultaneously estimate the time, size, and location of a disturbance using PMU measurements of the active power output of a limited number of generators and the impedance matrix of the system. The immediate power change at the remote generator terminals is combined with the synchronizing power coefficient matrix in a two-stage process. Stage one uses a decision tree to determine that a disturbance has occurred, which then initiates stage two that estimates the size and location of the disturbance. This is based on the level of agreement between the monitored generators. Case studies and sensitivity analysis for the IEEE 39 bus test network are presented to verify the accuracy of the proposed method for varied levels of measurement noise, impedance matrix errors, and topology errors for various disturbance sizes and locations.
引用
收藏
页码:1362 / 1372
页数:11
相关论文
共 25 条
[1]  
Anderson PM, 2008, IEEE T SYST MAN CYB, DOI DOI 10.1109/TSMC.1979.4310158
[2]  
[Anonymous], P 2011 POW EN SOC GE
[3]  
[Anonymous], 2007, 2007 IEEE POW ENG SO
[4]  
[Anonymous], 2011, IEEE STD C371181 201, DOI DOI 10.1109/IEEESTD.2006.99376
[5]   Inertia Estimation of the GB Power System Using Synchrophasor Measurements [J].
Ashton, Phillip M. ;
Saunders, Christopher S. ;
Taylor, Gareth A. ;
Carter, Alex M. ;
Bradley, Martin E. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (02) :701-709
[6]   Wide-area protection and emergency control [J].
Begovic, M ;
Novosel, D ;
Karlsson, D ;
Henville, C ;
Michel, G .
PROCEEDINGS OF THE IEEE, 2005, 93 (05) :876-891
[7]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[8]   Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System's Inertia [J].
Delille, Gauthier ;
Francois, Bruno ;
Malarange, Gilles .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (04) :931-939
[9]   An Assessment of the Impact of Wind Generation on System Frequency Control [J].
Doherty, Ronan ;
Mullane, Alan ;
Nolan, Gillian ;
Burke, Daniel J. ;
Bryson, Alexander ;
O'Malley, Mark .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :452-460
[10]  
Erik Orum KENM., 2015, NORDIC REPORT FUTURE