Absolute Continuity of the Spectrum of the Periodic Schrodinger Operator in a Cylinder with Robin Boundary Condition

被引:1
作者
Kachkovskiy, I. V. [1 ]
Filonov, N. D. [2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, St Petersburg, Russia
[3] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
Schrodinger operator in a cylinder; Robin boundary condition; absolutely continuous spectrum; spectral cluster estimates; CLUSTERS;
D O I
10.1134/S0016266320020045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the spectrum of the Schrodinger operator H = -Delta + V in a smooth cylinder with Robin boundary condition partial derivative(v)u = sigma u is purely absolutely continuous, assuming that the coefficients V and sigma are periodic in the axial directions.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2010, ZAP NAUC SEMIN POMI
[2]  
[Anonymous], 1976, Grundlehren der mathematischen Wissenschaften
[3]  
BIRMAN MS, 1999, ALGEBR ANAL, V11, P1
[4]   Lq BOUNDS ON RESTRICTIONS OF SPECTRAL CLUSTERS TO SUBMANIFOLDS FOR LOW REGULARITY METRICS [J].
Blair, Matthew D. .
ANALYSIS & PDE, 2013, 6 (06) :1263-1288
[5]   On absolute continuity of the spectrum of a periodic magnetic Schrodinger operator [J].
Danilov, L. I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)
[6]  
Kachkovskii I., 2009, ALGEBR ANAL, V21, P133
[7]  
Kachkovskiy I V, 2013, FUNKT ANAL PRIL, V47, P27, DOI [10.4213/faa3107, DOI 10.4213/FAA3107]
[8]  
Kachkovskiy I V, 2013, ABSENCE EIGENVALUES
[9]  
Kuchment P, 1993, FLOQUET THEORY PARTI
[10]  
Reed M., 1978, Analysis of Operators, V4