Widely linear estimation for multisensor quaternion systems with mixed uncertainties in the observations

被引:10
作者
Navarro-Moreno, Jesus [1 ]
Maria Fernandez-Alcala, Rosa [1 ]
Domingo Jimenez-Lopez, Jose [1 ]
Carlos Ruiz-Molina, Juan [1 ]
机构
[1] Univ Jaen, Dept Stat & Operat Res, Jaen 23071, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2019年 / 356卷 / 05期
关键词
MULTIPLE PACKET DROPOUTS; RANDOM SENSOR DELAYS; NETWORKED SYSTEMS; KALMAN FILTER; FUSION; TRACKING; DESIGN;
D O I
10.1016/j.jfranklin.2018.08.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal widely linear state estimation problem for quaternion systems with multiple sensors and mixed uncertainties in the observations is solved in a unified framework. For that, we devise a unified model to describe the mixed uncertainties of sensor delays, packet dropouts and uncertain observations by using three Bernoulli distributed quaternion random processes. The proposed model is valid for linear discrete-time quaternion stochastic systems measured by multiple sensors and it allows us to provide filtering, prediction and smoothing algorithms for estimating the quaternion state through a widely linear processing. Simulation results are employed to show the superior performance of such algorithms in comparison to standard widely linear methods when mixed uncertainties are present in the observations. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3115 / 3138
页数:24
相关论文
共 29 条
[1]   Covariance-based estimation algorithms in networked systems with mixed uncertainties in the observations [J].
Caballero-Aguila, R. ;
Hermoso-Carazo, A. ;
Linares-Perez, J. .
SIGNAL PROCESSING, 2014, 94 :163-173
[2]   Pseudo Open-Loop Unscented Quaternion Estimator for Attitude Estimation [J].
Chang, Lubin ;
Qin, Fangjun ;
Zha, Feng .
IEEE SENSORS JOURNAL, 2016, 16 (11) :4460-4469
[3]   Human Motion Tracking With Wireless Wearable Sensor Network: Experience and Lessons [J].
Chen, Jianxin ;
Zhou, Liang ;
Zhang, Yun ;
Fondo Ferreiro, David .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2013, 7 (05) :998-1013
[4]   Novel quaternion Kalman filter [J].
Choukroun, D ;
Bar-Itzhack, IY ;
Oshman, Y .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (01) :174-190
[5]   Quaternion-Based Complementary Filter for Attitude Determination of a Smartphone [J].
Del Rosario, Michael B. ;
Lovell, Nigel H. ;
Redmond, Stephen J. .
IEEE SENSORS JOURNAL, 2016, 16 (15) :6008-6017
[6]   Kalman filtering for widely linear complex and quaternion valued bearings only tracking [J].
Dini, D. H. ;
Jahanchahi, C. ;
Mandic, D. P. .
IET SIGNAL PROCESSING, 2012, 6 (05) :435-445
[7]   Widely linear estimation of quaternion signals with intermittent observations [J].
Domingo Jimenez-Lopez, Jose ;
Maria Fernandez-Alcala, Rosa ;
Navarro-Moreno, Jesils ;
Carlos Ruiz-Molina, Juan .
SIGNAL PROCESSING, 2017, 136 :92-101
[8]   Random Weighting Method for Multisensor Data Fusion [J].
Gao, Shesheng ;
Zhong, Yongmin ;
Li, Wei .
IEEE SENSORS JOURNAL, 2011, 11 (09) :1955-1961
[9]  
Hanson AJ., 2006, Visualizing Quaternions, V1
[10]   Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds [J].
Hertzberg, Christoph ;
Wagner, Rene ;
Frese, Udo ;
Schroeder, Lutz .
INFORMATION FUSION, 2013, 14 (01) :57-77