Role of the microRNA, miR-206, and its target PIK3C2α in endothelial progenitor cell function - potential link with coronary artery disease

被引:36
作者
Tang, Yong [1 ]
Zhang, Yachen [1 ]
Chen, Yu [1 ]
Xiang, Yin [1 ]
Xie, Yuquan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Cardiol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
coronary artery disease; endothelial progenitor cells; microRNA; miR-206; PIK3C2; alpha; DOWN-REGULATION; CIRCULATING MICRORNAS; GENE-EXPRESSION; CANCER; INVASION; PROLIFERATION; MECHANISMS; REPRESSION; SKELETAL;
D O I
10.1111/febs.13372
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coronary artery disease is a major cause of morbidity and mortality worldwide. Impaired endothelial function and integrity are major contributory factors to coronary artery disease. MicroRNAs have been proposed to play an important role in coronary artery disease pathogenesis. In the present study, the expression of miR-206 was found to be significantly upregulated in peripheral blood endothelial progenitor cells from patients with coronary artery disease compared to healthy donors. MiR-206 was found to regulate endothelial progenitor cell activities by targeting the protein kinase PIK3C2 alpha, which showed decreased expression in coronary artery disease endothelial progenitor cells. Knockdown of miR-206 in coronary artery disease endothelial progenitor cells rescued their angiogenic and vasculogenic abilities both in vitro and in vivo in a mouse ischemic hindlimb model. Furthermore, knockdown of miR-206 activated not only PIK3C2 alpha, but also the angiogenic signal modulators Akt and endothelial nitric oxide synthase. It is therefore proposed that repression of the phosphoinositide 3-kinase/Akt/endothelial nitric oxide synthase signal transduction pathway by miR-206 downregulates angiogenesis contributing to the pathophysiology of coronary artery disease.
引用
收藏
页码:3758 / 3772
页数:15
相关论文
共 48 条
[1]   Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis [J].
Ackah, E ;
Yu, J ;
Zoellner, S ;
Iwakiri, Y ;
Skurk, C ;
Shibata, R ;
Ouchi, N ;
Easton, RM ;
Galasso, G ;
Birnbaum, MJ ;
Walsh, K ;
Sessa, WC .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (08) :2119-2127
[2]   The Role of miR-206 in the Epidermal Growth Factor (EGF) Induced Repression of Estrogen Receptor-α (ERα) Signaling and a Luminal Phenotype in MCF-7 Breast Cancer Cells [J].
Adams, Brian D. ;
Cowee, Danielle M. ;
White, Bruce A. .
MOLECULAR ENDOCRINOLOGY, 2009, 23 (08) :1215-1230
[3]   Mobilizing endothelial progenitor cells [J].
Aicher, A ;
Zeiher, AM ;
Dimmeler, S .
HYPERTENSION, 2005, 45 (03) :321-325
[4]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[5]   MIR-206 regulates connexin43 expression during skeletal muscle development [J].
Anderson, Curtis ;
Catoe, Heath ;
Werner, Rudolf .
NUCLEIC ACIDS RESEARCH, 2006, 34 (20) :5863-5871
[6]  
[Anonymous], 1985, World Health Organ Tech Rep Ser, V727, P1
[7]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   Endothelial progenitor cell dysfunction: mechanisms and therapeutic approaches [J].
Bauersachs, J. ;
Thum, T. .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2007, 37 (08) :603-606
[10]   MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype [J].
Blenkiron, Cherie ;
Goldstein, Leonard D. ;
Thorne, Natalie P. ;
Spiteri, Inmaculada ;
Chin, Suet-Feung ;
Dunning, Mark J. ;
Barbosa-Morais, Nuno L. ;
Teschendorff, Andrew E. ;
Green, Andrew R. ;
Ellis, Ian O. ;
Tavare, Simon ;
Caldas, Carlos ;
Miska, Eric A. .
GENOME BIOLOGY, 2007, 8 (10)