Intuitive approximations in discrete renewal theory, Part 1: Regularly varying case

被引:1
作者
Omey, Edward [1 ]
Van Gulck, Stefan [1 ]
机构
[1] Katholieke Univ Leuven, Fac Econ & Business, B-1000 Brussels, Belgium
关键词
Renewal sequence; Regular variation; Approximations;
D O I
10.1016/j.spl.2015.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is usually impossible to find explicit expressions for the renewal sequence. This paper presents a simple method to approximate the renewal sequence, which covers many of the known approximations. The paper uses the ideas of Mitov and Omey (2014). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 14 条
[1]  
Bingham N., 1987, ENCY MATH ITS APPL
[2]   BANACH ALGEBRA METHODS IN RENEWAL THEORY [J].
ESSEN, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :303-336
[3]   FLUCTUATION THEORY OF RECURRENT EVENTS [J].
FELLER, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 67 (SEP) :98-119
[4]  
Frenk J.B.G., 1983, THESIS MATH CENTRUM
[5]  
Frenk J.B.G., 1987, BANACH ALGEBRAS RENE, V38
[6]  
Geluk J. L., 1987, Regular Variation, Extensions and Tauberian Theorems
[7]   FUNCTIONS OF DISCRETE PROBABILITY-MEASURES - RATES OF CONVERGENCE IN THE RENEWAL THEOREM [J].
GRUBEL, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (03) :341-357
[8]  
Grubel R., 1979, THESIS U ESSEN
[9]  
KARLIN S, 1955, PAC J MATH, V5, P229
[10]   Intuitive approximations for the renewal function [J].
Mitov, Kosto V. ;
Omey, Edward .
STATISTICS & PROBABILITY LETTERS, 2014, 84 :72-80