Monitoring Ethiopian Wheat Fungus with Satellite Imagery and Deep Feature Learning

被引:20
作者
Pryzant, Reid [1 ]
Ermon, Stefano [1 ]
Lobell, David [2 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA
来源
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2017年
基金
美国国家科学基金会;
关键词
VEGETATION INDEXES; REFLECTANCE MEASUREMENTS; YELLOW RUST; LAI;
D O I
10.1109/CVPRW.2017.196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wheat is the most important Ethiopian crop, and rust one of its greatest antagonists. There is a need for cheap and scalable rust monitoring in the developing world, but existing methods employ costly data collection techniques. We introduce a scalable, accurate, and inexpensive method for tracking outbreaks with publicly available remote sensing data. Our approach improves existing techniques in two ways. First, we forgo the spectral features employed by the remote sensing community in favor of automatically learned features generated by Convolutional and Long Short-Term Memory Networks. Second, we aggregate data into larger geospatial regions. We evaluate our approach on nine years of agricultural outcomes, show that it outperforms competing techniques, and demonstrate its predictive foresight. This is a promising new direction in crop disease monitoring, one that has the potential to grow more powerful with time.
引用
收藏
页码:1524 / 1532
页数:9
相关论文
共 40 条
[1]   Evaluating the Effect of Different Wheat Rust Disease Symptoms on Vegetation Indices Using Hyperspectral Measurements [J].
Ashourloo, Davoud ;
Mobasheri, Mohammad Reza ;
Huete, Alfredo .
REMOTE SENSING, 2014, 6 (06) :5107-5123
[2]   POTENTIALS AND LIMITS OF VEGETATION INDEXES FOR LAI AND APAR ASSESSMENT [J].
BARET, F ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :161-173
[3]   Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J].
Broge, NH ;
Leblanc, E .
REMOTE SENSING OF ENVIRONMENT, 2001, 76 (02) :156-172
[4]  
Chung Junyoung, 2014, Empirical evaluation of gated recurrent neural networks on sequence modeling
[5]   Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves [J].
Devadas, R. ;
Lamb, D. W. ;
Simpfendorfer, S. ;
Backhouse, D. .
PRECISION AGRICULTURE, 2009, 10 (06) :459-470
[6]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[7]  
FAO R., 2013, FOOD AGR ORG UN
[8]  
Fink D., 2013, AAAI
[9]   Mapping global cropland and field size [J].
Fritz, Steffen ;
See, Linda ;
McCallum, Ian ;
You, Liangzhi ;
Bun, Andriy ;
Moltchanova, Elena ;
Duerauer, Martina ;
Albrecht, Fransizka ;
Schill, Christian ;
Perger, Christoph ;
Havlik, Petr ;
Mosnier, Aline ;
Thornton, Philip ;
Wood-Sichra, Ulrike ;
Herrero, Mario ;
Becker-Reshef, Inbal ;
Justice, Chris ;
Hansen, Matthew ;
Gong, Peng ;
Aziz, Sheta Abdel ;
Cipriani, Anna ;
Cumani, Renato ;
Cecchi, Giuliano ;
Conchedda, Giulia ;
Ferreira, Stefanus ;
Gomez, Adriana ;
Haffani, Myriam ;
Kayitakire, Francois ;
Malanding, Jaiteh ;
Mueller, Rick ;
Newby, Terence ;
Nonguierma, Andre ;
Olusegun, Adeaga ;
Ortner, Simone ;
Rajak, D. Ram ;
Rocha, Jansle ;
Schepaschenko, Dmitry ;
Schepaschenko, Maria ;
Terekhov, Alexey ;
Tiangwa, Alex ;
Vancutsem, Christelle ;
Vintrou, Elodie ;
Wu Wenbin ;
van der Velde, Marijn ;
Dunwoody, Antonia ;
Kraxner, Florian ;
Obersteiner, Michael .
GLOBAL CHANGE BIOLOGY, 2015, 21 (05) :1980-1992
[10]   Remote estimation of chlorophyll content in higher plant leaves [J].
Gitelson, AA ;
Merzlyak, MN .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (12) :2691-2697