Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy

被引:7
作者
Chen, Fang [1 ]
Neupane, Bhanu [1 ,2 ]
Li, Peiyuan [1 ]
Su, Wei [1 ]
Wang, Gufeng [1 ]
机构
[1] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[2] Kathmandu Inst Appl Sci, Kathmandu, Nepal
关键词
Confined diffusion; Confocal fluorescence microscopy; Cylindrical nanopores; Fluorescence correlation spectroscopy; POROUS ALUMINA MEMBRANES; MOLECULE SPECTROSCOPY; DNA-MOLECULES; THIN-FILMS; TRANSPORT; NANOPARTICLES; NANOCHANNELS; ADSORPTION; SEPARATION; CATALYSIS;
D O I
10.1002/elps.201600158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of similar to 2, which can be satisfactorily explained by hydrodynamic frictions.
引用
收藏
页码:2129 / 2138
页数:10
相关论文
共 36 条
[1]   Functional PEG-modified thin films for biological detection [J].
Anderson, Aaron S. ;
Dattelbaum, Andrew M. ;
Montano, Gabriel A. ;
Price, Dominique N. ;
Schmidt, Jurgen G. ;
Martinez, Jennifer S. ;
Grace, W. Kevin ;
Grace, Karen M. ;
Swanson, Basil I. .
LANGMUIR, 2008, 24 (05) :2240-2247
[2]   RESTRICTED TRANSPORT IN SMALL PORES - MODEL FOR STERIC EXCLUSION AND HINDERED PARTICLE MOTION [J].
ANDERSON, JL ;
QUINN, JA .
BIOPHYSICAL JOURNAL, 1974, 14 (02) :130-150
[3]   FLUORESCENCE CORRELATION SPECTROSCOPY AS A PROBE OF MOLECULAR-DYNAMICS [J].
ARAGON, SR ;
PECORA, R .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (04) :1791-1803
[4]   Lorentzian spatial intensity distribution in one-photon fluorescence correlation spectroscopy [J].
Blom, Hans ;
Bjork, Gunnar .
APPLIED OPTICS, 2009, 48 (31) :6050-6058
[5]   Surface effects on cation transport across porous alumina membranes [J].
Bluhm, EA ;
Bauer, E ;
Chamberlin, RM ;
Abney, KD ;
Young, JS ;
Jarvinen, GD .
LANGMUIR, 1999, 15 (25) :8668-8672
[6]   FLUORESCENCE CORRELATION SPECTROSCOPY .1. CONCEPTUAL BASIS AND THEORY [J].
ELSON, EL ;
MAGDE, D .
BIOPOLYMERS, 1974, 13 (01) :1-27
[7]   Single molecule spectroscopy studies of diffusion in mesoporous silica thin films [J].
Fu, Y ;
Ye, FM ;
Sanders, WG ;
Collinson, MM ;
Higgins, DA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (18) :9164-9170
[8]   Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used [J].
Gennerich, A ;
Schild, D .
BIOPHYSICAL JOURNAL, 2000, 79 (06) :3294-3306
[9]   Separation of long DNA molecules in a microfabricated entropic trap array [J].
Han, J ;
Craighead, HG .
SCIENCE, 2000, 288 (5468) :1026-1029
[10]   Electrophoretic Migration and Axial Diffusion of Individual Nanoparticles in Cylindrical Nanopores [J].
Han, Rui ;
Wang, Gufeng ;
Qi, Shengda ;
Ma, Changbei ;
Yeung, Edward S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34) :18460-18468