Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti-Nb-Zr-CPP Composites Fabricated by Spark Plasma Sintering

被引:11
作者
He, Zheng-Yuan [1 ,2 ]
Zhang, Lei [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
Zhang, Yu-Qin [1 ,2 ,3 ]
Jiang, Ye-Hua [1 ,2 ]
Zhou, Rong [1 ,2 ]
Tan, Jun [1 ,2 ,4 ]
机构
[1] Kunming Univ Sci & Technol, Sch Mat Sci & Engn, Kunming 650093, Peoples R China
[2] Natl Local Joint Engn Lab Met Adv Solidificat For, Kunming 650093, Peoples R China
[3] Engn Technol Res Ctr Titanium Prod & Applicat Yun, Kunming 650093, Peoples R China
[4] IFW Dresden, Inst Complex Mat, POB 27 01 16, D-01171 Dresden, Germany
基金
中国国家自然科学基金;
关键词
Composites; Spark plasma sintering; Microstructure; Mechanical behaviours; Bioactivity; TI-13NB-13ZR ALLOY; TITANIUM-ALLOYS; HYDROXYAPATITE; INDUCTION; IMPLANTS;
D O I
10.1007/s40195-016-0486-y
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
To alleviate the bio-inert of Ti alloys as hard tissue implants, Ti-35Nb-7Zr-xCPP (calcium pyrophosphate, x = 5, 10, 15, 20 wt%) composites were prepared by mechanical alloying (MA) and following spark plasma sintering (SPS). Mechanical behaviours and in vitro bioactivity of these composites were investigated systematically. Results showed that the composites consisted of beta-Ti matrix, alpha-Ti, and metal-ceramic phases such as CaO, CaTiO3, CaZrO3, and TixPy. With increasing CPP content, the composites had higher strength (over 1500 MPa) and higher elastic modulus, but suffered almost zero plastic deformation together with lower relative density. When the CPP contents were 5 and 10 wt%, the compressive elastic moduli were 44 and 48 GPa, respectively, which were close to those of natural bones. However, the compressive elastic modulus of the composites increased significantly when CPP contents exceed 10 wt%, thus deteriorating the mechanical compatibility of the composites owing to more a-Ti and metal-ceramic phases. Besides, the surface of Ti-35Nb-7Zr-10CPP composite was deposited as a homogeneous apatite layer during soaking in simulated body fluid (SBF). It indicates a good bioactivity between the implant materials and living bones.
引用
收藏
页码:1073 / 1080
页数:8
相关论文
共 24 条
[1]   Electrochemical corrosion and bioactivity of titanium-hydroxyapatite composites prepared by spark plasma sintering [J].
Anawati ;
Tanigawa, Hiroaki ;
Asoh, Hidetaka ;
Ohno, Takuya ;
Kubota, Masahiro ;
Ono, Sachiko .
CORROSION SCIENCE, 2013, 70 :212-220
[2]   Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material [J].
Arifin, Amir ;
Sulong, Abu Bakar ;
Muhamad, Norhamidi ;
Syarif, Junaidi ;
Ramli, Mohd Ikram .
MATERIALS & DESIGN, 2015, 65 :1028-1034
[3]   Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition [J].
Baker, M. A. ;
Assis, S. L. ;
Higa, O. Z. ;
Costa, I. .
ACTA BIOMATERIALIA, 2009, 5 (01) :63-75
[4]   Mechanical and electrochemical properties of laser surface nitrided Ti-6Al-4V [J].
Biswas, A. ;
Li, L. ;
Chatterjee, U. K. ;
Manna, I. ;
Pabi, S. K. ;
Majumdar, J. Dutta .
SCRIPTA MATERIALIA, 2008, 59 (02) :239-242
[5]   An in-vitro Investigation of Iron-Containing Hydroxyapatite/Titanium Composites [J].
Chang, Q. ;
Ru, H. Q. ;
Chen, D. L. ;
Yue, X. Y. ;
Yu, L. ;
Zhang, C. P. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (06) :546-552
[6]   Anelastic relaxation associated to phase transformations and interstitial atoms in the Ti-35Nb-7Zr alloy [J].
Chaves, J. M. ;
Florencio, O. ;
Silva, P. S., Jr. ;
Marques, P. W. B. ;
Schneider, S. G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 616 :420-425
[7]   Hydroxyapatite and zirconia composites:: Effect of MgO and MgF2 on the stability of phases and sinterability [J].
Evis, Zafer ;
Usta, Metin ;
Kutbay, Isil .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 110 (01) :68-75
[8]   Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments [J].
Fukuda, A. ;
Takemoto, M. ;
Saito, T. ;
Fujibayashi, S. ;
Neo, M. ;
Yamaguchi, S. ;
Kizuki, T. ;
Matsushita, T. ;
Niinomi, M. ;
Kokubo, T. ;
Nakamura, T. .
ACTA BIOMATERIALIA, 2011, 7 (03) :1379-1386
[9]   Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy [J].
Henriques, V. A. R. ;
Galvani, E. T. ;
Petroni, S. L. G. ;
Paula, M. S. M. ;
Lemos, T. G. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (21) :5844-5850
[10]  
Kim HS, 2008, J MATER SCI TECHNOL, V24, P33