A short note on plain convergence of adaptive least-squares finite element methods

被引:10
作者
Fuhrer, Thomas [1 ]
Praetorius, Dirk [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Least squares finite element methods; Adaptive algorithm; Convergence; OPTIMALITY; SOLVER; FEM; FORMULATION; BEM;
D O I
10.1016/j.camwa.2020.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1619 / 1632
页数:14
相关论文
共 37 条
[21]   A linear Uzawa-type FEM-BEM solver for nonlinear transmission problems [J].
Fuhrer, Thomas ;
Praetorius, Dirk .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) :2678-2697
[22]   VARIATIONAL FORMULATION AND NUMERICAL ANALYSIS OF LINEAR ELLIPTIC EQUATIONS IN NONDIVERGENCE FORM WITH CORDES COEFFICIENTS [J].
Gallistl, Dietmar .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :737-757
[23]  
Gantner G., 2020, ARXIV200511000
[24]   Rate optimal adaptive FEM with inexact solver for nonlinear operators [J].
Gantner, Gregor ;
Haberl, Alexander ;
Praetorius, Dirk ;
Stiftner, Bernhard .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) :1797-1831
[25]  
Gantner Gregor, 2020, RATE OPTIMALIT UNPUB
[26]  
Girault V., 1986, FINITE ELEMENT METHO
[27]  
Hiptmair R, 2002, ACT NUMERIC, V11, P237
[28]   On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection [J].
Karkulik, Michael ;
Pavlicek, David ;
Praetorius, Dirk .
CONSTRUCTIVE APPROXIMATION, 2013, 38 (02) :213-234
[29]  
Monk P., 2003, FINITE ELEMENT METHO, DOI DOI 10.1093/ACPROF:OSO/9780198508885.001.0001
[30]   Data oscillation and convergence of adaptive FEM [J].
Morin, P ;
Nochetto, RH ;
Siebert, KG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :466-488