A short note on plain convergence of adaptive least-squares finite element methods

被引:8
作者
Fuhrer, Thomas [1 ]
Praetorius, Dirk [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Least squares finite element methods; Adaptive algorithm; Convergence; OPTIMALITY; SOLVER; FEM; FORMULATION; BEM;
D O I
10.1016/j.camwa.2020.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1619 / 1632
页数:14
相关论文
共 37 条
  • [1] [Anonymous], 2013, Matrix Computations
  • [2] STOPPING CRITERIA FOR ADAPTIVE FINITE ELEMENT SOLVERS
    Arioli, Mario
    Georgoulis, Emmanuil H.
    Loghin, Daniel
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) : A1537 - A1559
  • [3] BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
  • [4] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [5] Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
  • [6] BOFFI D., 2013, SPRINGER SER COMPUT, V44, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
  • [7] BRENNER S. C., 2008, The mathematical theory of finite element methods, V15, DOI 10.1007/978-0-387-75934-0
  • [8] AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES
    Bringmann, P.
    Carstensen, C.
    Starke, G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 428 - 447
  • [9] 1ST-ORDER SYSTEM LEAST-SQUARES FOR 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS .1.
    CAI, Z
    LAZAROV, R
    MANTEUFFEL, TA
    MCCORMICK, SF
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) : 1785 - 1799
  • [10] An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity
    Cai, ZQ
    Korsawe, J
    Starke, G
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (01) : 132 - 148