On a Multi-Point Schwarz-Pick Lemma

被引:7
作者
Cho, Kyung Hyun [1 ]
Kim, Seong-A [2 ]
Sugawa, Toshiyuki [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, Kyungbuk, South Korea
[2] Dongguk Univ, Dept Math Educ, Gyeongju 780714, Kyungbuk, South Korea
[3] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Schwarz-Pick Lemma; Schur algorithm; Nevanlinna-Pick interpolation; Peschl's invariant derivative; Dieudonne's Lemma; INEQUALITY;
D O I
10.1007/BF03321839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the multi-point Schwarz-Pick Lemma and its associate functions due to Beardon-Minda and Baribeau-Rivard-Wegert. Basic properties of the associate functions are summarized. Then we observe that special cases of the multi-point Schwarz-Pick Lemma give the Schur's continued fraction algorithm and several inequalities for bounded analytic functions on the unit disk.
引用
收藏
页码:483 / 499
页数:17
相关论文
共 18 条
  • [1] Ahlfors Lars V., 1973, Conformal Invariants: Topics in Geometric Function Theory
  • [2] [Anonymous], 1952, CONFORMAL MAPPINGS
  • [3] [Anonymous], 1948, ANAL THEORY CONTINUE
  • [4] Baribeau L., 2009, COMPUT METH FUNCT TH, V9, P391
  • [5] Beardon A. F., 2008, COMPUT METH FUNCT TH, V8, P409
  • [6] A multi-point Schwarz-Pick Lemma
    Beardon, AF
    Minda, D
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1): : 81 - 104
  • [7] A STRENGTHENING OF THE SCHWARZ-PICK INEQUALITY
    BEARDON, AF
    CARNE, TK
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (03) : 216 - 217
  • [8] Duren P. L., 1983, Univalent Functions
  • [9] Kaptanoglu HT, 2002, MICH MATH J, V50, P649
  • [10] Invariant differential operators associated with a conformal metric
    Kim, Seong-A
    Sugawa, Toshiyuki
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 459 - 479