QPDAS: Dual Active Set Solver for Mixed Constraint Quadratic Programming

被引:0
作者
Falt, Mattias [1 ]
Giselsson, Pontus [1 ]
机构
[1] Lund Univ, Dept Automat Control, Lund, Sweden
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
瑞典研究理事会;
关键词
LARGE-SCALE; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method for solving the general mixed constrained convex quadratic programming problem using an active set method on the dual problem. The approach is similar to existing active set methods, but we present a new way of solving the linear systems arising in the algorithm. There are two main contributions; we present a new way of factorizing the linear systems, and show how iterative refinement can be used to achieve good accuracy and to solve both types of sub-problems that arise from semi-definite problems.
引用
收藏
页码:4891 / 4897
页数:7
相关论文
共 18 条
  • [1] [Anonymous], 2010, CONVEX OPTIMIZATION
  • [2] [Anonymous], 1995, USERS GUIDE QPOPT 1
  • [3] [Anonymous], 2014, IFAC Proc.
  • [4] Bailion J. B., 1978, ASYMPTOTIC BEHAV NON, V4
  • [5] QPSchur: A dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming
    Bartlett, RA
    Biegler, LT
    [J]. OPTIMIZATION AND ENGINEERING, 2006, 7 (01) : 5 - 32
  • [6] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [7] Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
    Bauschke, HH
    Combettes, PL
    Luke, DR
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) : 178 - 192
  • [8] Nonlinear control of constrained linear systems via predictive reference management
    Bemporad, A
    Casavola, A
    Mosca, E
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (03) : 340 - 349
  • [9] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [10] Falt M., 2019, QPDAS QUADRATIC PROG