Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers

被引:3
作者
Blahota, Istvan [1 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, H-4400 Nyiregyhaza, Hungary
关键词
Character system; group of 2-adic integers; Fourier series; a.e; convergence; logarithmic means;
D O I
10.1515/gmj-2012-0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the almost everywhere convergence of a special subsequence of the logarithmic means of integrable functions, I-mn f := 1/l(mn) Sigma(mn-1)(k=1) S-k f/m(n) - f -> f for every f is an element of L-1(I), where l(n) := and Sigma(n-1)(k=1) 1/k I is the group of 2-adic integers. We suppose that Sigma(infinity)(n=1) log2(m(n) - 2([log mn]) + 1)/log m(n) < infinity. It proves that t(2n) f(x) -> f(x) a.e. as n -> infinity for every f is an element of L-1(I), too.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 11 条
[1]  
Blahota I., 2008, ANAL THEORY APPL, V24, P1
[2]   On the almost everywhere convergence of Fejer means of functions on the group of 2-adic integers [J].
Gat, G .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) :88-96
[3]   ORTHONORMAL SYSTEMS ON VILENKIN GROUPS [J].
GAT, G .
ACTA MATHEMATICA HUNGARICA, 1991, 58 (1-2) :193-198
[4]  
Gat G., 2008, FACTA U, V21, P275
[5]  
Goginava U, 2006, ACTA SCI MATH, V72, P159
[6]  
Goginava U., 2005, ACTA MATH ACAD PAEDA, V21, P169
[7]  
Hewitt E., 1963, GRUND MATH WISS, VI, P115
[8]  
Marcinkiewicz J., 1939, Fundam. Math, V32, P122, DOI DOI 10.4064/FM-32-1-122-132
[9]   APPROXIMATION BY NORLUND MEANS OF WALSH-FOURIER SERIES [J].
MORICZ, F ;
SIDDIQI, AH .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (03) :375-389
[10]  
SCHIPP F, 1992, PURE A MATH, V138, P437