Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

被引:36
|
作者
Farsani, Iman Fazeli [1 ]
Farzaneh, M. R. [2 ]
Besalatpour, A. A. [3 ]
Salehi, M. H. [1 ]
Faramarzi, M. [4 ]
机构
[1] Shahrekord Univ, Dept Soil Sci, Coll Agr, POB 115, Shahrekord, Iran
[2] Gorgan Univ Agr Sci & Nat Resources, Dept Water Engn, Gorgan 4918943464, Golestan, Iran
[3] Inter 3 GmbH, Inst Ressourcenmanagement, Otto Suhr Allee 59, D-10585 Berlin, Germany
[4] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada
关键词
Water resource management; RCP emission scenarios; Prediction uncertainty; SWAT model; RIVER-BASIN; AVAILABILITY; FLOWS;
D O I
10.1007/s00704-018-2474-9
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R-2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [21] Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3
    Joetzjer, E.
    Douville, H.
    Delire, C.
    Ciais, P.
    CLIMATE DYNAMICS, 2013, 41 (11-12) : 2921 - 2936
  • [22] Assessing potential flood vulnerability to climate change by CMIP3 and CMIP5 models: case study of the 2011 Thailand great flood
    Supharatid, S.
    Aribarg, T.
    Supratid, S.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2016, 7 (01) : 52 - 67
  • [23] CO2-induced climate change in northern Europe: CMIP2 versus CMIP3 versus CMIP5
    Raisanen, Jouni
    Ylhaisi, Jussi S.
    CLIMATE DYNAMICS, 2015, 45 (7-8) : 1877 - 1897
  • [24] CO2-induced climate change in northern Europe: CMIP2 versus CMIP3 versus CMIP5
    Jouni Räisänen
    Jussi S. Ylhäisi
    Climate Dynamics, 2015, 45 : 1877 - 1897
  • [25] East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models
    JIANG DaBang
    TIAN ZhiPing
    ChineseScienceBulletin, 2013, 58 (12) : 1427 - 1435
  • [26] Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians
    Amber N. Wright
    Mark W. Schwartz
    Robert J. Hijmans
    H. Bradley Shaffer
    Climatic Change, 2016, 134 : 579 - 591
  • [27] East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models
    Jiang DaBang
    Tian ZhiPing
    CHINESE SCIENCE BULLETIN, 2013, 58 (12): : 1427 - 1435
  • [28] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    Dufresne, J-L.
    Foujols, M-A.
    Denvil, S.
    Caubel, A.
    Marti, O.
    Aumont, O.
    Balkanski, Y.
    Bekki, S.
    Bellenger, H.
    Benshila, R.
    Bony, S.
    Bopp, L.
    Braconnot, P.
    Brockmann, P.
    Cadule, P.
    Cheruy, F.
    Codron, F.
    Cozic, A.
    Cugnet, D.
    de Noblet, N.
    Duvel, J-P.
    Ethe, C.
    Fairhead, L.
    Fichefet, T.
    Flavoni, S.
    Friedlingstein, P.
    Grandpeix, J-Y.
    Guez, L.
    Guilyardi, E.
    Hauglustaine, D.
    Hourdin, F.
    Idelkadi, A.
    Ghattas, J.
    Joussaume, S.
    Kageyama, M.
    Krinner, G.
    Labetoulle, S.
    Lahellec, A.
    Lefebvre, M-P.
    Lefevre, F.
    Levy, C.
    Li, Z. X.
    Lloyd, J.
    Lott, F.
    Madec, G.
    Mancip, M.
    Marchand, M.
    Masson, S.
    Meurdesoif, Y.
    Mignot, J.
    CLIMATE DYNAMICS, 2013, 40 (9-10) : 2123 - 2165
  • [29] Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
    J.-L. Dufresne
    M.-A. Foujols
    S. Denvil
    A. Caubel
    O. Marti
    O. Aumont
    Y. Balkanski
    S. Bekki
    H. Bellenger
    R. Benshila
    S. Bony
    L. Bopp
    P. Braconnot
    P. Brockmann
    P. Cadule
    F. Cheruy
    F. Codron
    A. Cozic
    D. Cugnet
    N. de Noblet
    J.-P. Duvel
    C. Ethé
    L. Fairhead
    T. Fichefet
    S. Flavoni
    P. Friedlingstein
    J.-Y. Grandpeix
    L. Guez
    E. Guilyardi
    D. Hauglustaine
    F. Hourdin
    A. Idelkadi
    J. Ghattas
    S. Joussaume
    M. Kageyama
    G. Krinner
    S. Labetoulle
    A. Lahellec
    M.-P. Lefebvre
    F. Lefevre
    C. Levy
    Z. X. Li
    J. Lloyd
    F. Lott
    G. Madec
    M. Mancip
    M. Marchand
    S. Masson
    Y. Meurdesoif
    J. Mignot
    Climate Dynamics, 2013, 40 : 2123 - 2165
  • [30] Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets
    Roger Rodrigues Torres
    Jose Antonio Marengo
    Theoretical and Applied Climatology, 2014, 117 : 579 - 587