Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks

被引:104
作者
Jimenez-del-Toro, Oscar [1 ,2 ,3 ]
Muller, Henning [1 ,2 ,3 ]
Krenn, Markus [4 ]
Gruenberg, Katharina [5 ]
Taha, Abdel Aziz [6 ]
Winterstein, Marianne [5 ]
Eggel, Ivan [1 ]
Foncubierta-Rodriguez, Antonio [7 ]
Goksel, Orcun [7 ]
Jakab, Andres [4 ]
Kontokotsios, Georgios [6 ]
Langs, Georg [4 ]
Menze, Bjoern H. [7 ]
Fernandez, Tomas Salas [8 ]
Schaer, Roger [1 ]
Walleyo, Anna [5 ]
Weber, Marc-Andre [5 ]
Cid, Yashin Dicente [1 ,2 ,3 ]
Gass, Tobias [7 ]
Heinrich, Mattias [9 ]
Jia, Fucang [10 ]
Kahl, Fredrik [11 ]
Kechichian, Razmig [12 ]
Mai, Dominic [13 ]
Spanier, Assaf B. [14 ]
Vincent, Graham [15 ]
Wang, Chunliang [16 ]
Wyeth, Daniel [17 ]
Hanbury, Allan [6 ]
机构
[1] Univ Appl Sci Western Switzerland, CH-3960 Sierre, Switzerland
[2] Univ Hosp, CH-1205 Geneva, Switzerland
[3] Univ Geneva, CH-1205 Geneva, Switzerland
[4] Med Univ Vienna, A-1090 Vienna, Austria
[5] Univ Heidelberg Hosp, D-69120 Heidelberg, Germany
[6] Vienna Univ Technol, A-1040 Vienna, Austria
[7] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
[8] Agcy Hlth Qual & Assessment Catalonia, Barcelona 08005, Spain
[9] Univ Lubeck, D-23562 Lubeck, Germany
[10] Chinese Acad Sci, Shenzhen Intitutes Adv Technol, Beijing 100864, Peoples R China
[11] Chalmers Univ Technol, S-41258 Gothenburg, Sweden
[12] Univ Lyon, F-69007 Lyon, France
[13] Univ Freiburg, D-79085 Freiburg, Germany
[14] Hebrew Univ Jerusalem, IL-9190401 Jerusalem, Israel
[15] Imorphics, Manchester M15 6SE, Lancs, England
[16] KTH Royal Inst Technol, S-11428 Stockholm, Sweden
[17] Toshiba Med Visualizat Syst Europe, Edinburgh EH6 5NP, Midlothian, Scotland
关键词
Evaluation framework; organ segmentation; landmark detection; COMPUTED-TOMOGRAPHY SCANS; IMAGE SEGMENTATION; MULTIORGAN; MRI; LOCALIZATION; VOLUMETRY;
D O I
10.1109/TMI.2016.2578680
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.
引用
收藏
页码:2459 / 2475
页数:17
相关论文
共 53 条
  • [41] Automated model-based organ delineation for radiotherapy planning in prostatic region
    Pekar, V
    McNutt, TR
    Kaus, MR
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (03): : 973 - 980
  • [42] Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study
    Rudyanto, Rina D.
    Kerkstra, Sjoerd
    van Rilowort, Eva M.
    Fetita, Catalin
    Brillet, Pierre-Yves
    Lefevre, Christophe
    Xue, Wenzhe
    Zhu, Xiangjun
    Liang, Jianming
    Oksuz, Ilkay
    Unay, Devrim
    Kadipasoglu, Kamuran
    Estepar, Raul San Jose
    Ross, James C.
    Washko, George R.
    Prieto, Juan-Carlos
    Hernandez Hoyos, Marcela
    Orkisz, Maciej
    Meine, Hans
    Huellebrand, Markus
    Stoecker, Christina
    Mir, Fernando Lopez
    Naranjo, Valery
    Villanueva, Eliseo
    Staring, Marius
    Xiao, Changyan
    Stoel, Berend C.
    Fabijanska, Anna
    Smistad, Erik
    Elster, Anne C.
    Lindseth, Frank
    Foruzan, Amir Hossein
    Kiros, Ryan
    Popuri, Karteek
    Cobzas, Dana
    Jimenez-Carretero, Daniel
    Santos, Andres
    Ledesma-Carbayo, Maria J.
    Helmberger, Michael
    Urschler, Martin
    Pienn, Michael
    Bosboom, Dennis G. H.
    Campo, Arantza
    Prokop, Mathias
    de Jong, Pim A.
    Ortiz-de-Solorzano, Carlos
    Munoz-Barrutia, Arrate
    van Ginneken, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (07) : 1217 - 1232
  • [43] Automated medical image segmentation techniques
    Sharma, Neeraj
    Aggarwal, Lalit M.
    [J]. JOURNAL OF MEDICAL PHYSICS, 2010, 35 (01) : 3 - 14
  • [44] Online resource for validation of brain segmentation methods
    Shattuck, David W.
    Prasad, Gautam
    Mirza, Mubeena
    Narr, Katherine L.
    Toga, Arthur W.
    [J]. NEUROIMAGE, 2009, 45 (02) : 431 - 439
  • [45] Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography
    Shimizu, Akinobu
    Kimoto, Tatsuya
    Kobatake, Hidefumi
    Nawano, Shigeru
    Shinozaki, Kenji
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2010, 5 (01) : 85 - 98
  • [46] Rule-Based Ventral Cavity Multi-organ Automatic Segmentation in CT Scans
    Spanier, Assaf B.
    Joskowicz, Leo
    [J]. MEDICAL COMPUTER VISION: ALGORITHMS FOR BIG DATA, 2014, 8848 : 163 - 170
  • [47] Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
    Taha, Abdel Aziz
    Hanbury, Allan
    [J]. BMC MEDICAL IMAGING, 2015, 15
  • [48] Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
    van Ginneken, Bram
    Armato, Samuel G., III
    de Hoop, Bartjan
    van Amelsvoort-van de Vorst, Saskia
    Duindam, Thomas
    Niemeijer, Meindert
    Murphy, Keelin
    Schilham, Arnold
    Retico, Alessandra
    Fantacci, Maria Evelina
    Camarlinghi, Niccolo
    Bagagli, Francesco
    Gori, Ilaria
    Hara, Takeshi
    Fujita, Hiroshi
    Gargano, Gianfranco
    Bellotti, Roberto
    Tangaro, Sabina
    Bolanos, Lourdes
    De Carlo, Francesco
    Cerello, Piergiorgio
    Cheran, Sorin Cristian
    Lopez Torres, Ernesto
    Prokop, Mathias
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (06) : 707 - 722
  • [49] Vincent G., 2012, P MICCAI WORKSH PROS
  • [50] Wang C., 2014, P CEUR WORKSH VISCER, V1194, P25