Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline

被引:46
作者
Wang, Wenyan [1 ]
Zhang, Yongjie [1 ]
Xu, Guoliang [2 ]
Hughes, Thomas J. R. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Quadrilateral mesh; Hexahedral mesh; Rational T-spline; Solid T-spline; Bezier extraction; Linear independence; Isogeometric analysis;
D O I
10.1007/s00466-011-0674-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a novel method for converting any unstructured quadrilateral or hexahedral mesh to a generalized T-spline surface or solid T-spline, based on the rational T-spline basis functions. Our conversion algorithm consists of two stages: the topology stage and the geometry stage. In the topology stage, the input quadrilateral or hexahedral mesh is taken as the initial T-mesh. To construct a gap-free T-spline, templates are designed for each type of node and applied to elements in the input mesh. In the geometry stage, an efficient surface fitting technique is developed to improve the surface accuracy with sharp feature preservation. The constructed T-spline surface and solid T-spline interpolate every boundary node in the input mesh, with C (2)-continuity everywhere except the local region around irregular nodes. Finally, a B,zier extraction technique is developed and linear independence of the constructed T-splines is studied to facilitate T-spline based isogeometric analysis.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 15 条
  • [1] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [2] Isogeometric finite element data structures based on Bezier extraction of NURBS
    Borden, Michael J.
    Scott, Michael A.
    Evans, John A.
    Hughes, Thomas J. R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) : 15 - 47
  • [3] Goldman R.D., 1993, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces
  • [4] Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
    Hughes, TJR
    Cottrell, JA
    Bazilevs, Y
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) : 4135 - 4195
  • [5] Li W, 2006, THESIS I NATL POLYTE
  • [6] Li W., 2006, Proceedings of the Fourth Eurographics Symposium on Geometry Processing, P191
  • [7] On linear independence of T-spline blending functions
    Li, Xin
    Zheng, Jianmin
    Sederberg, Thomas W.
    Hughes, Thomas J. R.
    Scott, Michael A.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (01) : 63 - 76
  • [8] Piegl L., 2012, The NURBS Book
  • [9] Qian J., 2010, 19 INT MESHING ROUND, P243
  • [10] Local refinement of analysis-suitable T-splines
    Scott, M. A.
    Li, X.
    Sederberg, T. W.
    Hughes, T. J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 : 206 - 222