Finiteness of central configurations of five bodies in the plane

被引:108
作者
Albouy, Alain [1 ]
Kaloshin, Vadim [2 ]
机构
[1] Observ Paris, CNRS UMR8028, F-75014 Paris, France
[2] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
CLASSIFYING RELATIVE EQUILIBRIA; N-BODY PROBLEM; 5-BODY PROBLEM; MASSES;
D O I
10.4007/annals.2012.176.1.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove there are finitely many isometry classes of planar central configurations (also called relative equilibria) in the Newtonian 5-body problem, except perhaps if the 5-tuple of positive masses belongs to a given codimension 2 subvariety of the mass space.
引用
收藏
页码:535 / 588
页数:54
相关论文
共 35 条
[31]   TOPOLOGY AND MECHANICS .2. PLANAR N-BODY PROBLEM [J].
SMALE, S .
INVENTIONES MATHEMATICAE, 1970, 11 (01) :45-&
[32]   DYNAMICS RETROSPECTIVE - GREAT PROBLEMS, ATTEMPTS THAT FAILED [J].
SMALE, S .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) :267-273
[33]  
Smale S., 2000, Mathematics: Frontiers and Perspectives, P271
[34]  
Wintner A., 1941, Princeton Math. Ser., V5
[35]   CENTRAL CONFIGURATIONS WITH MANY SMALL MASSES [J].
XIA, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (01) :168-179