Finiteness of central configurations of five bodies in the plane

被引:106
作者
Albouy, Alain [1 ]
Kaloshin, Vadim [2 ]
机构
[1] Observ Paris, CNRS UMR8028, F-75014 Paris, France
[2] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
CLASSIFYING RELATIVE EQUILIBRIA; N-BODY PROBLEM; 5-BODY PROBLEM; MASSES;
D O I
10.4007/annals.2012.176.1.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove there are finitely many isometry classes of planar central configurations (also called relative equilibria) in the Newtonian 5-body problem, except perhaps if the 5-tuple of positive masses belongs to a given codimension 2 subvariety of the mass space.
引用
收藏
页码:535 / 588
页数:54
相关论文
共 35 条
  • [1] ALBOUY A, 1995, CR ACAD SCI I-MATH, V320, P217
  • [2] The inverse problem for collinear central configurations
    Albouy, A
    Moeckel, R
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (02) : 77 - 91
  • [3] Albouy A., 1996, CONT MATH, P131, DOI [DOI 10.1090/CONM/198/02494, 10.1090/conm/198/02494]
  • [4] [Anonymous], 1767, Novi Comm. Acad. Sci. Imp. Petrop
  • [5] [Anonymous], 1984, ERGEB MATH GRENZGEB
  • [6] Arnold Vladimir Igorevich, 1969, MAT ZAMETKI, V5, P227
  • [7] Chazy J., 1918, Bull. Astron., V35, P321
  • [8] Dubrovin B. A., 1984, GRAD TEXTS MATH, V3
  • [9] EULER L., 1763, OPERA OMNIA, V25, P281
  • [10] EULER L., 1763, MEM ACAD BERLIN, V19, P194