On degenerate linear stochastic evolution equations driven by jump processes

被引:10
作者
Leahy, James-Michael [1 ]
Mikulevicius, Remigijus [2 ]
机构
[1] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Univ So Calif, Los Angeles, CA 90089 USA
关键词
Systems of stochastic integro-differential equations; L-2; theory; Degenerate stochastic parabolic PDEs; Levy processes;
D O I
10.1016/j.spa.2015.05.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application of this result, we derive the existence and uniqueness of solutions of degenerate parabolic linear stochastic integro-differential equations (SIDEs) in the Sobolev scale. The SIDEs that we consider arise in the theory of non-linear filtering as the equations governing the conditional density of a degenerate jump-diffusion signal given a jump-diffusion observation, possibly with correlated noise. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:3748 / 3784
页数:37
相关论文
共 25 条
[1]  
Berger Melvin S., 1977, LECT NONLINEAR PROBL
[2]  
Dareiotis K., 2014, ARXIV14065649
[3]   A Comparison Principle for Stochastic Integro-Differential Equations [J].
Dareiotis, Konstantinos Anastasios ;
Gyongy, Istvan .
POTENTIAL ANALYSIS, 2014, 41 (04) :1203-1222
[4]  
De Marco Giuseppe., 1994, NODEA-NONLINEAR DIFF, V1, P229, DOI DOI 10.1007/BF01197748
[5]  
Gerencser Mate, 2014, ARXIV14044401
[6]  
Grigelionis B., 1983, THEORY APPL RANDOM F, P49
[7]  
Gyongy I., 1980, Stochastics, V4, P1, DOI 10.1080/03610918008833154
[8]   ON STOCHASTIC EQUATIONS WITH RESPECT TO SEMIMARTINGALES III. [J].
GYONGY, I. .
1982, V 7 (N 4) :231-254
[9]  
Gyongy I., 1982, STOCHASTICS, V6, P153
[10]  
KOMATSU T, 1984, OSAKA J MATH, V21, P113