Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors

被引:84
作者
Ma, Guofu [1 ]
Guo, Dongyang [1 ]
Sun, Kanjun [2 ]
Peng, Hui [1 ]
Yang, Qian [1 ]
Zhou, Xiaozhong [1 ]
Zhao, Xiaolong [1 ]
Lei, Ziqiang [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecoenvironm Related Polymer Mat,Minist Ed, Lanzhou 730070, Peoples R China
[2] Lanzhou City Univ, Coll Chem & Environm Sci, Lanzhou 730070, Peoples R China
基金
美国国家科学基金会;
关键词
CATALYTIC CARBONIZATION; GRAPHENE; ENERGY; MOS2;
D O I
10.1039/c5ra11179j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cotton-based porous activated carbons (CACs) are prepared through a simple chemical activation method using cotton fiber as carbon source and ZnCl2 as activating agent. Powder X-ray diffraction, scanning electron microscopy, and N-2 adsorption-desorption tests demonstrate that the carbons activated with different amounts of ZnCl2 have a large number of mesopores, notably, a maximum specific surface area of 2548.6 m(2) g(-1) and ultrahigh pore volume of 1.54 cm(3) g(-1) for CAC2 sample are obtained when the cotton/ZnCl2 mass ratio is 1 : 2. As an electrode material for supercapacitors, the CAC2 possesses a high specific capacitance of 239 F g(-1) at 0.5 A g(-1) and good rate capability (82% capacitance retention even at 8 A g(-1)) in 2 mol L-1 KOH aqueous electrolyte. Moreover, the as-assembled CAC2//CAC2 symmetric supercapacitor exhibits a high energy density of 13.75 Wh kg(-1) at a power density of 225 W kg(-1) operated at the voltage range of 0 to 1.8 V in 0.5 mol L-1 Na2SO4 aqueous electrolyte and an excellent cyclability retaining about 93% initial capacitance after 5000 cycles.
引用
收藏
页码:64704 / 64710
页数:7
相关论文
共 50 条
  • [31] Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors.
    Aboagye, Alex
    Liu, Yiyang
    Ryan, James G.
    Wei, Jianjun
    Zhang, Lifeng
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 214 : 557 - 563
  • [32] Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode
    Lin, Honghai
    Tan, Zhixiang
    Yang, Jiewei
    Mo, Rumeng
    Liang, Yeru
    Zheng, Mingtao
    Hu, Hang
    Dong, Hanwu
    Liu, Xiangrong
    Liu, Yingliang
    Xiao, Yong
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [33] Porous wood carbon monolith for high-performance supercapacitors
    Liu, Mao-Cheng
    Kong, Ling-Bin
    Zhang, Peng
    Luo, Yong-Chun
    Kang, Long
    ELECTROCHIMICA ACTA, 2012, 60 : 443 - 448
  • [34] Ultra-high specific surface area porous carbon derived from chestnut for high-performance supercapacitor
    Zhang, Di
    Sun, Lizhi
    Liu, Qian
    Sun, Huilan
    Wang, Qiujun
    Li, Wen
    Li, Zhaojin
    Wang, Bo
    BIOMASS & BIOENERGY, 2021, 153
  • [35] Optimization of preparation of lignite-based activated carbon for high-performance supercapacitors with response surface methodology
    Zhang, Zhuo-ran
    Luo, Shao-hua
    Wang, Jia-chen
    Sun, Meng-yao
    Yan, Sheng-xue
    Wang, Qing
    Zhang, Ya-hui
    Liu, Xin
    Lei, Xue-fei
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [36] Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors
    Long, Chao
    Zhuang, Jianle
    Xiao, Yong
    Zheng, Mingtao
    Hu, Hang
    Dong, Hanwu
    Lei, Bingfu
    Zhang, Haoran
    Liu, Yingliang
    JOURNAL OF POWER SOURCES, 2016, 310 : 145 - 153
  • [37] Dulse-derived porous carbon-polyaniline nanocomposite electrode for high-performance supercapacitors
    Tan, Yongtao
    Liu, Yuansen
    Zhang, Yafei
    Xu, Changan
    Kong, Lingbin
    Kang, Long
    Ran, Fen
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (05)
  • [38] Interweaving Activated Carbon with Multi-dimensional Carbon Nanomaterials for High-performance Supercapacitors
    Cheng, Fang
    Yang, Xiaoping
    Dai, Shuya
    Song, Dan
    Zhang, Shuangpeng
    Lu, Wen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [39] Hierarchical Porous Carbon Based on Waste Quinoa Straw for High-Performance Supercapacitors
    Ma, Tianyi
    Xu, Shiai
    Zhu, Mengshi
    ACS OMEGA, 2024, 9 (12): : 13592 - 13602
  • [40] Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors
    Wang, Bingbing
    Li, Daohao
    Tang, Maowen
    Ma, Haibing
    Gui, Yougang
    Tian, Xing
    Quan, Fengyu
    Song, Xiquan
    Xia, Yanzhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 : 517 - 522