Triple-Function Electrolyte Regulation toward Advanced Aqueous Zn-Ion Batteries

被引:219
作者
Hao, Junnan [1 ]
Yuan, Libei [2 ]
Zhu, Yilong [1 ]
Jaroniec, Mietek [3 ,4 ]
Qiao, Shi-Zhang [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[3] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[4] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
基金
澳大利亚研究理事会;
关键词
aqueous batteries; electrolyte modification; O; (2) adsorption corrosion; self-healing ability; CORROSION PRODUCTS; ZINC; ELECTRODEPOSITION; DESIGN;
D O I
10.1002/adma.202206963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The poor Zn reversibility has been criticized for limiting applications of aqueous Zn-ion batteries (ZIBs); however, its behavior in aqueous media is not fully uncovered yet. Here, this knowledge gap is addressed, indicating that Zn electrodes face a O-2-involving corrosion, besides H-2 evolution and dendrite growth. Differing from aqueous Li/Na batteries, removing O-2 cannot enhance ZIB performance because of the aggravated competing H-2 evolution. To address Zn issues, a one-off electrolyte strategy is reported by introducing the triple-function C3H7Na2O6P, which can take effects during the shelf time of battery. It regulates H+ concentration and reduces free-water activity, inhibiting H-2 evolution. A self-healing solid/electrolyte interphase (SEI) can be triggered before battery operation, which suppresses O-2 adsorption corrosion and dendritic deposition. Consequently, a high Zn reversibility of 99.6% is achieved under a high discharge depth of 85%. The pouch full-cell with a lean electrolyte displays a record lifespan with capacity retention of 95.5% after 500 cycles. This study not only looks deeply into Zn behavior in aqueous media but also underscores rules for the design of active metal anodes, including Zn and Li metals, during shelf time toward real applications.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Enhanced photocatalytic activity of Zn3(PO4)2/ZnO composite semiconductor prepared by different methods [J].
Akhsassi, B. ;
Bouddouch, A. ;
Naciri, Y. ;
Bakiz, B. ;
Taoufyq, A. ;
Favotto, C. ;
Villain, S. ;
Guinneton, F. ;
Benlhachemi, A. .
CHEMICAL PHYSICS LETTERS, 2021, 783
[2]   Solvation Structure Design for Aqueous Zn Metal Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Hu, Enyuan ;
Xu, Jijian ;
Deng, Tao ;
Ma, Lin ;
Wang, Yi ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21404-21409
[3]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[4]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[5]   Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS [J].
Diler, E. ;
Lescop, B. ;
Rioual, S. ;
Vien, G. Nguyen ;
Thierry, D. ;
Rouvellou, B. .
CORROSION SCIENCE, 2014, 79 :83-88
[6]   Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life [J].
Dong, Xiaoli ;
Chen, Long ;
Liu, Jingyuan ;
Haller, Servane ;
Wang, Yonggang ;
Xia, Yongyao .
SCIENCE ADVANCES, 2016, 2 (01)
[7]   Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J].
Du, Wencheng ;
Ang, Edison Huixiang ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3330-3360
[8]   Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries [J].
Guo, Jing ;
Ming, Jun ;
Lei, Yongjiu ;
Zhang, Wenli ;
Xia, Chuan ;
Cui, Yi ;
Alshareef, Husam N. .
ACS ENERGY LETTERS, 2019, 4 (12) :2776-2781
[9]   A non-flammable hydrous organic electrolyte for sustainable zinc batteries [J].
Han, Daliang ;
Cui, Changjun ;
Zhang, Kangyu ;
Wang, Zhenxing ;
Gao, Jiachen ;
Guo, Yong ;
Zhang, Zhicheng ;
Wu, Shichao ;
Yin, Lichang ;
Weng, Zhe ;
Kang, Feiyu ;
Yang, Quan-Hong .
NATURE SUSTAINABILITY, 2022, 5 (03) :205-+
[10]   Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn-Air Battery [J].
Han, Sancan ;
Hu, Xiaoyi ;
Wang, Jiacheng ;
Fang, Xiaosheng ;
Zhu, Yufang .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)