Triple-Function Electrolyte Regulation toward Advanced Aqueous Zn-Ion Batteries

被引:184
作者
Hao, Junnan [1 ]
Yuan, Libei [2 ]
Zhu, Yilong [1 ]
Jaroniec, Mietek [3 ,4 ]
Qiao, Shi-Zhang [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[3] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[4] Kent State Univ, Adv Mat & Liquid Crystal Inst, Kent, OH 44242 USA
基金
澳大利亚研究理事会;
关键词
aqueous batteries; electrolyte modification; O; (2) adsorption corrosion; self-healing ability; CORROSION PRODUCTS; ZINC; ELECTRODEPOSITION; DESIGN;
D O I
10.1002/adma.202206963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The poor Zn reversibility has been criticized for limiting applications of aqueous Zn-ion batteries (ZIBs); however, its behavior in aqueous media is not fully uncovered yet. Here, this knowledge gap is addressed, indicating that Zn electrodes face a O-2-involving corrosion, besides H-2 evolution and dendrite growth. Differing from aqueous Li/Na batteries, removing O-2 cannot enhance ZIB performance because of the aggravated competing H-2 evolution. To address Zn issues, a one-off electrolyte strategy is reported by introducing the triple-function C3H7Na2O6P, which can take effects during the shelf time of battery. It regulates H+ concentration and reduces free-water activity, inhibiting H-2 evolution. A self-healing solid/electrolyte interphase (SEI) can be triggered before battery operation, which suppresses O-2 adsorption corrosion and dendritic deposition. Consequently, a high Zn reversibility of 99.6% is achieved under a high discharge depth of 85%. The pouch full-cell with a lean electrolyte displays a record lifespan with capacity retention of 95.5% after 500 cycles. This study not only looks deeply into Zn behavior in aqueous media but also underscores rules for the design of active metal anodes, including Zn and Li metals, during shelf time toward real applications.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] Enhanced photocatalytic activity of Zn3(PO4)2/ZnO composite semiconductor prepared by different methods
    Akhsassi, B.
    Bouddouch, A.
    Naciri, Y.
    Bakiz, B.
    Taoufyq, A.
    Favotto, C.
    Villain, S.
    Guinneton, F.
    Benlhachemi, A.
    [J]. CHEMICAL PHYSICS LETTERS, 2021, 783
  • [2] Solvation Structure Design for Aqueous Zn Metal Batteries
    Cao, Longsheng
    Li, Dan
    Hu, Enyuan
    Xu, Jijian
    Deng, Tao
    Ma, Lin
    Wang, Yi
    Yang, Xiao-Qing
    Wang, Chunsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) : 21404 - 21409
  • [3] An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices
    Chang, Nana
    Li, Tianyu
    Li, Rui
    Wang, Shengnan
    Yin, Yanbin
    Zhang, Huamin
    Li, Xianfeng
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3527 - 3535
  • [4] Roadmap for advanced aqueous batteries: From design of materials to applications
    Chao, Dongliang
    Zhou, Wanhai
    Xie, Fangxi
    Ye, Chao
    Li, Huan
    Jaroniec, Mietek
    Qiao, Shi-Zhang
    [J]. SCIENCE ADVANCES, 2020, 6 (21):
  • [5] Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS
    Diler, E.
    Lescop, B.
    Rioual, S.
    Vien, G. Nguyen
    Thierry, D.
    Rouvellou, B.
    [J]. CORROSION SCIENCE, 2014, 79 : 83 - 88
  • [6] Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life
    Dong, Xiaoli
    Chen, Long
    Liu, Jingyuan
    Haller, Servane
    Wang, Yonggang
    Xia, Yongyao
    [J]. SCIENCE ADVANCES, 2016, 2 (01):
  • [7] Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries
    Du, Wencheng
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3330 - 3360
  • [8] Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries
    Guo, Jing
    Ming, Jun
    Lei, Yongjiu
    Zhang, Wenli
    Xia, Chuan
    Cui, Yi
    Alshareef, Husam N.
    [J]. ACS ENERGY LETTERS, 2019, 4 (12) : 2776 - 2781
  • [9] A non-flammable hydrous organic electrolyte for sustainable zinc batteries
    Han, Daliang
    Cui, Changjun
    Zhang, Kangyu
    Wang, Zhenxing
    Gao, Jiachen
    Guo, Yong
    Zhang, Zhicheng
    Wu, Shichao
    Yin, Lichang
    Weng, Zhe
    Kang, Feiyu
    Yang, Quan-Hong
    [J]. NATURE SUSTAINABILITY, 2022, 5 (03) : 205 - +
  • [10] Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn-Air Battery
    Han, Sancan
    Hu, Xiaoyi
    Wang, Jiacheng
    Fang, Xiaosheng
    Zhu, Yufang
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (22)