Examining the thermal conductivity of the half-Heusler alloy TiNiSn by first-principles calculations

被引:38
作者
Ding, Guangqian [1 ]
Gao, G. Y.
Yao, K. L.
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
thermoelectric; half-Heusler alloys; first-principles; THERMOELECTRIC PROPERTIES;
D O I
10.1088/0022-3727/48/23/235302
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermoelectric properties of the half-Heusler alloy TiNiSn have been studied for a decade, however, a theoretical report on its thermal conductivity is still relatively unknown, because it is difficult to effectively estimate the lattice thermal conductivity. In this work, we use the ShengBTE code developed recently to examine the lattice thermal conductivity of TiNiSn. The calculated lattice thermal conductivity at room temperature is 7.6 W m(-1)K(-1), which is close to the experimental value of 8 W m(-1)K(-1). We also find that the total and lattice thermal conductivities dependent on temperature are in good agreement with available experiments, and the total thermal conductivity is dominated by the lattice contribution. The present work is useful for the theoretical prediction of lattice thermal conductivity and the optimization of thermoelectric performance.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Improved Callaway model for lattice thermal conductivity [J].
Allen, Philip B. .
PHYSICAL REVIEW B, 2013, 88 (14)
[2]   Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys [J].
Bhattacharya, S ;
Tritt, TM ;
Xia, Y ;
Ponnambalam, V ;
Poon, SJ ;
Thadhani, N .
APPLIED PHYSICS LETTERS, 2002, 81 (01) :43-45
[3]   Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys [J].
Bhattacharya, S. ;
Skove, M. J. ;
Russell, M. ;
Tritt, T. M. ;
Xia, Y. ;
Ponnambalam, V. ;
Poon, S. J. ;
Thadhani, N. .
PHYSICAL REVIEW B, 2008, 77 (18)
[4]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[5]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[6]   Low thermal conductivity and triaxial phononic anisotropy of SnSe [J].
Carrete, Jesus ;
Mingo, Natalio ;
Curtarolo, Stefano .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[7]   Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials [J].
Chiritescu, Catalin ;
Mortensen, Clay ;
Cahill, David G. ;
Johnson, David ;
Zschack, Paul .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (07)
[8]   Enhanced thermoelectric performance in TiNiSn-based half-Heuslers [J].
Downie, R. A. ;
MacLaren, D. A. ;
Smith, R. I. ;
Bos, J. W. G. .
CHEMICAL COMMUNICATIONS, 2013, 49 (39) :4184-4186
[9]   LATTICE THERMAL CONDUCTIVITY [J].
DUGDALE, JS ;
MACDONALD, DKC .
PHYSICAL REVIEW, 1955, 98 (06) :1751-1752
[10]  
Goldsmid H J, 1964, THERMOELECTRIC REFRI