Applications of the generalized Fourier transform in numerical linear algebra

被引:6
|
作者
Åhlander, K
Munthe-Kaas, H
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
non commutative Fourier analysis; equivariant operators; block diagonalization;
D O I
10.1007/s10543-005-0030-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Equivariant matrices, commuting with a group of permutation matrices, are considered. Such matrices typically arise from PDEs and other computational problems where the computational domain exhibits discrete geometrical symmetries. In these cases, group representation theory provides a powerful tool for block diagonalizing the matrix via the Generalized Fourier Transform (GFT). This technique yields substantial computational savings in problems such as solving linear systems, computing eigenvalues and computing analytic matrix functions such as the matrix exponential. The paper is presenting a comprehensive self contained introduction to this field. Building upon the familiar special (finite commutative) case of circulant matrices being diagonalized with the Discrete Fourier Transform, we generalize the classical convolution theorem and diagonalization results to the noncommutative case of block diagonalizing equivariant matrices. Applications of the GFT in problems with domain symmetries have been developed by several authors in a series of papers. In this paper we elaborate upon the results in these papers by emphasizing the connection between equivariant matrices, block group algebras and noncommutative convolutions. Furthermore, we describe the algebraic structure of projections related to non-free group actions. This approach highlights the role of the underlying mathematical structures, and provides insight useful both for software construction and numerical analysis. The theory is illustrated with a selection of numerical examples.
引用
收藏
页码:819 / 850
页数:32
相关论文
共 50 条
  • [41] From double Hecke algebra to Fourier transform
    Ivan Cherednik
    Viktor Ostrik
    Selecta Mathematica, 2003, 9 (2) : 161 - 249
  • [42] Parameter estimation of linear and quadratic chirps by employing the fractional fourier transform and a generalized time frequency transform
    Sahay, Shishir B.
    Meghasyam, T.
    Roy, Rahul K.
    Pooniwala, Gaurav
    Chilamkurthy, Sasank
    Gadre, Vikram
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2015, 40 (04): : 1049 - 1075
  • [43] SOME APPLICATIONS OF FOURIER SERIES IN THE NUMERICAL TREATMENT OF LINEAR BEHAVIOUR
    ROESLER, FC
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1955, 68 (02): : 89 - 96
  • [44] A generalized T-transform for the Fourier-type functional and its applications
    Chung, Hyun Soo
    Lee, Il Yong
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 715 - 728
  • [45] Riesz Potentials for the κ-Generalized Fourier Transform
    Oukili, Sara
    Sifi, Mohamed
    JOURNAL OF LIE THEORY, 2021, 31 (01) : 287 - 300
  • [46] Fractional Fourier transform of generalized functions
    Zayed, AI
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 299 - 312
  • [47] On the kernel of the (k,a)-Generalized fourier transform
    Gorbachev, Dmitry
    Ivanov, Valerii
    Tikhonov, Sergey
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [48] Beurling algebras and the generalized Fourier transform
    Borichev, AA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 73 : 431 - 480
  • [49] Bounds for the kernel of the (κ, a)-generalized Fourier transform
    De Bie, Hendrik
    Lian, Pan
    Maes, Frederick
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (04)
  • [50] Generalized Sliding Discrete Fourier Transform
    Murakami, Takahiro
    Ishida, Yoshihisa
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (01): : 338 - 345