Sulfurated Metal-Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn- Air Battery

被引:84
|
作者
Wu, Zexing [1 ]
Wu, Hengbo [2 ]
Niu, Tengfei [2 ]
Wang, Shuai [3 ]
Fu, Gengtao [4 ,5 ]
Jin, Wei [2 ]
Ma, Tianyi [6 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, 53 Zhengzhou Rd, Qingdao 266042, Peoples R China
[2] Jiangnan Univ, Sch Chem & Mat Engn, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Pharmaceut Engn, Shandong Prov Key Lab Mol Engn, 3501 Daxue Rd, Jinan 250353, Peoples R China
[4] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[5] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[6] Univ Newcastle Callaghan, Discipline Chem, Univ Dr, Newcastle, NSW 2287, Australia
基金
中国国家自然科学基金;
关键词
Metal sulfide; Oxygen reduction reaction; Oxygen evolution reaction; Zn-air battery; MOF; HIGHLY EFFICIENT; ASSISTED SYNTHESIS; DOPED GRAPHENE; NANOPARTICLES; CO; NANOSHEETS; CATALYSTS; HYDROGEN; CATHODE; SPHERES;
D O I
10.1021/acssuschemeng.0c03570
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development and rational design of highly efficient and Earth-abundant bifunctional nanomaterials for electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) act as pivotal roles for the practical applications of rechargeable metal-air batteries. In this article, a Ni-Co-derived metal-organic framework (Ni-Co-MOF) is rapidly formed at ambient temperature, followed by a low-temperature sulfuration process to obtain Ni-Co-based sulfides couple with a nitrogen (N) and sulfur (S)-codoped carbon support with a porous structure (Ni-Co-S/NSC). The designed Ni-Co-S/NSC presents excellent electrocatalytic performances for OER (10 mA cm(-2) @309 mV) and ORR (0.81 V g E-1/2) and a small Delta E (Delta E = E-j10 - E-1/2) of 0.73 V in an alkaline electrolyte, enabling its use as an outstanding cathode in rechargeable Zn-air batteries. In situ Raman spectra demonstrated that metal hydroxides formed during OER endowed the obtained electrocatalyst with a predominant catalytic performance. Impressively, a homemade rechargeable Zn- air battery composed by this nanocomposite as the cathode delivered remarkable properties with a peak power density of 137 mW cm(-2) and a high specific capacity of 829 mAh g(-1). The battery also demonstrated outstanding long-term stability with a well-maintained porous structure and crystal structure.
引用
收藏
页码:9226 / 9234
页数:9
相关论文
共 50 条
  • [1] Metal-Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc-Air Batteries
    Wang, Xiaorui
    Zhang, Jinwei
    Ma, Dou
    Feng, Xiao
    Wang, Lu
    Wang, Bo
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) : 33209 - 33217
  • [2] A metal-organic framework-derived bifunctional oxygen electrocatalyst
    Xia, Bao Yu
    Yan, Ya
    Li, Nan
    Wu, Hao Bin
    Lou, Xiong Wen
    Wang, Xin
    NATURE ENERGY, 2016, 1
  • [3] A metal-organic framework-derived bifunctional oxygen electrocatalyst
    Xia B.Y.
    Yan Y.
    Li N.
    Wu H.B.
    Lou X.W.D.
    Wang X.
    Nature Energy, 1 (1)
  • [4] Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis
    Li, Yuwen
    Lu, Mengting
    Wu, Yuhang
    Ji, Qinghong
    Xu, Hui
    Gao, Junkuo
    Qian, Guodong
    Zhang, Qichun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 18215 - 18219
  • [5] Metal-Organic Framework-Derived PtNi on N-Doped Carbon Boosting Efficient Oxygen Electrocatalysis
    Batool, Nadia
    Shahzad, Babar
    Iqbal, Waseem
    Han, Xiao-Feng
    Wang, Wen-Tao
    Yan, Jin
    Shi, Ruhua
    Tian, Jing-Hua
    Yang, Ruizhi
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) : 13134 - 13141
  • [6] Fused Hybrid Linkers for Metal-Organic Framework-Derived Bifunctional Oxygen Electrocatalysts
    Ping, Kefeng
    Braschinsky, Alan
    Alam, Mahboob
    Bhadoria, Rohit
    Mikli, Valdek
    Mere, Arvo
    Aruvali, Jaan
    Paiste, Paarn
    Vlassov, Sergei
    Kook, Mati
    Rahn, Mihkel
    Sammelselg, Vaino
    Tammeveski, Kaido
    Kongi, Nadezda
    Starkov, Pavel
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 152 - 157
  • [7] A review on development of metal-organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal-air batteries
    Javed, Najla
    Noor, Tayyaba
    Iqbal, Naseem
    Naqvi, Salman Raza
    RSC ADVANCES, 2023, 13 (02) : 1137 - 1161
  • [8] Bifunctional Oxygen Electrocatalysts Derived from Metal-Organic Framework-Hydrolyzed Nanosheets for Rechargeable Zn-Air Batteries
    He, Lin
    Hu, Hao
    Zhang, Hong-Bo
    Mei, Yi
    Li, Jin-Cheng
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 14799 - 14806
  • [9] Metal-Organic Framework-Derived Carbons for Battery Applications
    Li, Xiaxia
    Zheng, Shasha
    Jin, Ling
    Li, Yan
    Geng, Pengbiao
    Xue, Huaiguo
    Pang, Huan
    Xu, Qiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (23)
  • [10] Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries
    Liu, Fangqing
    Lu, Xiaoyi
    Shi, Chenglong
    Sun, Zhipeng
    BATTERIES & SUPERCAPS, 2024, 7 (11)