Problems and solutions in myoblast transfer therapy

被引:55
作者
Smythe, GM [1 ]
Hodgetts, SI
Grounds, MD
机构
[1] Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Palo Alto, CA 94304 USA
[2] Univ Western Australia, Dept Anat & Human Biol, Perth, WA 6009, Australia
关键词
myoblast; Duchenne muscular dystrophy; dystrophin gene; dystrophin; myoblast transfer therapy; stem cells; gene therapy;
D O I
10.1111/j.1582-4934.2001.tb00136.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Duchenne muscular dystrophy is a severe X-linked neuromuscular disease that affects approximately 1/3500 live male births in every human population, and is caused by a mutation in the gene that encodes the muscle protein dystrophin. The characterization and cloning of the dystrophin gene in 1987 was a major breakthrough and it was considered that simple replacement of the dystrophin gene would ameliorate the severe and progressive skeletal muscle wasting characteristic of Duchenne muscular dystrophy. After 20 years, attempts at replacing the dystrophin gene either experimentally or clinically have met with little success, but there have been many significant advances in understanding the factors that limit the delivery of a normal dystrophin gene into dystrophic host muscle. This review addresses the host immune response and donor myoblast changes underlying some of the major problems associated with myoblast-mediated dystrophin replacement, presents potential solutions, and outlines other novel therapeutic approaches.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 100 条
[1]   Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy [J].
Ahmad, A ;
Brinson, M ;
Hodges, BL ;
Chamberlain, JS ;
Amalfitano, A .
HUMAN MOLECULAR GENETICS, 2000, 9 (17) :2507-2515
[2]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[3]   Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice [J].
Barton-Davis, ER ;
Cordier, L ;
Shoturma, DI ;
Leland, SE ;
Sweeney, HL .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (04) :375-381
[4]   Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function [J].
Barton-Davis, ER ;
Shoturma, DI ;
Musaro, A ;
Rosenthal, N ;
Sweeney, HL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15603-15607
[5]   A dual-marker system for quantitative studies of myoblast transplantation in the mouse [J].
Beauchamp, JR ;
Pagel, CN ;
Partridge, TA .
TRANSPLANTATION, 1997, 63 (12) :1794-1797
[6]   Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells [J].
Beauchamp, JR ;
Heslop, L ;
Yu, DSW ;
Tajbakhsh, S ;
Kelly, RG ;
Wernig, A ;
Buckingham, ME ;
Partridge, TA ;
Zammit, PS .
JOURNAL OF CELL BIOLOGY, 2000, 151 (06) :1221-1233
[7]   Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source [J].
Beauchamp, JR ;
Morgan, JE ;
Pagel, CN ;
Partridge, TA .
JOURNAL OF CELL BIOLOGY, 1999, 144 (06) :1113-1121
[8]  
BEAUCHAMP JR, 1992, AM J PATHOL, V140, P387
[9]  
Bischoff R, 1997, DEV DYNAM, V208, P505, DOI 10.1002/(SICI)1097-0177(199704)208:4<505::AID-AJA6>3.0.CO
[10]  
2-M