Dimensions of triangulated categories with respect to subcategories

被引:12
作者
Aihara, Takuma [1 ]
Araya, Tokuji [2 ]
Iyama, Osamu [3 ]
Takahashi, Ryo [3 ,4 ]
Yoshiwaki, Michio [5 ]
机构
[1] Chiba Univ, Grad Sch Sci & Technol, Div Math Sci & Phys, Chiba 2638522, Japan
[2] Tokuyama Coll Technol, Liberal Arts Div, Shunan, Yamaguchi 7458585, Japan
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[5] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
Dimension of triangulated category; Functor category; Global dimension; Resolving subcategory; Cotilting module; Cohen-Macaulay module; REPRESENTATION THEORY; ARTIN ALGEBRAS; MODULES;
D O I
10.1016/j.jalgebra.2013.09.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a concept of dimension of a triangulated category with respect to a fixed full subcategory. For the bounded derived category of an abelian category, upper bounds of the dimension with respect to a contravariantly finite subcategory and a resolving subcategory are given. Our methods not only recover some known results on the dimensions of derived categories in the sense of Rouquier, but also apply to various commutative and non-commutative noetherian rings. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 38 条
[1]  
Aihara T., 2011, ARXIV11060205
[2]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[3]   On the structure of Cohen-Macaulay modules over hypersurfaces of countable Cohen-Macaulay representation type [J].
Araya, Tokuji ;
Iima, Kei-ichiro ;
Takahashi, Ryo .
JOURNAL OF ALGEBRA, 2012, 361 :213-224
[4]  
Asadollahi J., 2012, ARXIV12010479
[5]  
Assem D. Simson, 2006, LONDON MATH SOC STUD, V65
[6]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[7]   REPRESENTATION THEORY OF ARTIN ALGEBRAS .4. INVARIANTS GIVEN BY ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (05) :443-518
[8]  
AUSLANDER M, 1991, PROG MATH, V95, P221
[9]   ALMOST SPLIT-SEQUENCES IN SUBCATEGORIES [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1981, 69 (02) :426-454
[10]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152