Reducibility of one-dimensional quasi-periodic Schrodinger equations

被引:0
作者
Geng, Jiansheng [1 ]
Zhao, Zhiyan [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Inst Math Jussieu Paris Rive Gauche ANR Contract, F-75013 Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 104卷 / 03期
关键词
Reducibility; Dynamical localization; KAM; Short-range decay; ANDERSON LOCALIZATION; SOBOLEV NORMS; KAM THEOREM; DYNAMICAL LOCALIZATION; OPERATORS; GROWTH;
D O I
10.1016/j.matpur.2015.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the time-dependent linear Schrodinger equation i(q) over dot(n) = is an element of(q(n+1) + q(n-1)) + V(x + n omega)q(n) + delta Sigma(m is an element of z) a(mn) (theta+xi t)q(m), n is an element of Z, where V is a nonconstant real-analytic function on T, omega satisfies a certain Diophantine condition and a(mn) (theta) is real-analytic on T-b, b is an element of Z(+), decaying with vertical bar m vertical bar and vertical bar n vertical bar. We prove that, if epsilon and delta 5 are sufficiently small, then for a.e. x is an element of T and "most" frequency vectors xi is an element of T-b, it can be reduced to an autonomous equation. Moreover, for this non-autonomous system, "dynamical localization" is maintained in a quasi-periodic time-dependent way. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 32 条
[1]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[2]   Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods [J].
Bambusi, D ;
Graffi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) :465-480
[3]  
Berti M., 2013, ANN SCI EC NORM SUPE, V46
[4]  
Bourgain J, 2008, J EUR MATH SOC, V10, P1
[5]   Anderson localization for time quasi-periodic random Schrodinger and wave equations [J].
Bourgain, J ;
Wang, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (03) :429-466
[6]   On growth of Sobolev norms in linear Schrodinger equations with smooth time dependent potential [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 77 (1) :315-348
[7]   Growth of Sobolev norms in linear Schrodinger equations with quasi-periodic potential [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) :207-247
[8]  
Bourgain J, 2007, ANN MATH STUD, V163, P21
[9]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[10]   METHODS OF KAM-THEORY FOR LONG-RANGE QUASI-PERIODIC OPERATORS ON Z-NU - PURE POINT SPECTRUM [J].
CHULAEVSKY, VA ;
DINABURG, EI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :559-577