A Model Study of In Silico Proficiency Testing for Clinical Next-Generation Sequencing

被引:30
作者
Duncavage, Eric J. [1 ]
Abel, Haley J. [2 ]
Merker, Jason D. [3 ]
Bodner, John B. [4 ]
Zhao, Qin [5 ]
Voelkerding, Karl V. [6 ,7 ]
Pfeifer, John D. [1 ]
机构
[1] Washington Univ, Sch Med, Dept Pathol, Campus Box 8118,660 S Euclid Ave, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Genet, Campus Box 8118,660 S Euclid Ave, St Louis, MO 63110 USA
[3] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[4] Coll Amer Pathologists, Prod Dev, Lab Improvement Program, Northfield, IL USA
[5] Coll Amer Pathologists, Surveys Dept, Lab Improvement Program, Northfield, IL USA
[6] Univ Utah, Dept Pathol, Salt Lake City, UT USA
[7] Univ Utah, ARUP Labs, Salt Lake City, UT USA
关键词
GENOME; LABORATORIES; PERFORMANCE; FRAMEWORK; GENETICS; COLLEGE; QUALITY;
D O I
10.5858/arpa.2016-0194-CP
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Context.-Most current proficiency testing challenges for next-generation sequencing assays are methods-based proficiency testing surveys that use DNA from characterized reference samples to test both the wet-bench and bioinformatics/dry-bench aspects of the tests. Methods-based proficiency testing surveys are limited by the number and types of mutations that either are naturally present or can be introduced into a single DNA sample. Objective.-To address these limitations by exploring a model of in silico proficiency testing in which sequence data from a single well-characterized specimen are manipulated electronically. Design.-DNA from the College of American Pathologists reference genome was enriched using the Illumina TruSeq and Life Technologies AmpliSeq panels and sequenced on the MiSeq and Ion Torrent platforms, respectively. The resulting data were mutagenized in silico and 26 variants, including single-nucleotide variants, deletions, and dinucleotide substitutions, were added at variant allele fractions (VAFs) from 10% to 50%. Participating clinical laboratories downloaded these files and analyzed them using their clinical bioinformatics pipelines. Results.-Laboratories using the AmpliSeq/Ion Torrent and/or the TruSeq/MiSeq participated in the 2 surveys. On average, laboratories identified 24.6 of 26 variants (95%) overall and 21.4 of 22 variants (97%) with VAFs greater than 15%. No false-positive calls were reported. The most frequently missed variants were single-nucleotide variants with VAFs less than 15%. Across both challenges, reported VAF concordance was excellent, with less than 1% median absolute difference between the simulated VAF and mean reported VAF. Conclusions.-The results indicate that in silico proficiency testing is a feasible approach for methods-based proficiency testing, and demonstrate that the sensitivity and specificity of current next-generation sequencing bioinformatics across clinical laboratories are high.
引用
收藏
页码:1085 / 1091
页数:7
相关论文
共 22 条
[1]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+
[2]   Results of the College of American Pathology/American College of Medical Genetics and Genomics external proficiency testing from 2006 to 2013 for three conditions prevalent in the Ashkenazi Jewish population [J].
Feldman, Gerald L. ;
Schrijver, Iris ;
Lyon, Elaine ;
Palomaki, Glenn E. .
GENETICS IN MEDICINE, 2014, 16 (09) :695-702
[3]   Generation of Artificial FASTQ Files to Evaluate the Performance of Next-Generation Sequencing Pipelines [J].
Frampton, Matthew ;
Houlston, Richard .
PLOS ONE, 2012, 7 (11)
[4]   Assuring the quality of next-generation sequencing in clinical laboratory practice [J].
Gargis, Amy S. ;
Kalman, Lisa ;
Berry, Meredith W. ;
Bick, David P. ;
Dimmock, David P. ;
Hambuch, Tina ;
Lu, Fei ;
Lyon, Elaine ;
Voelkerding, Karl V. ;
Zehnbauer, Barbara A. ;
Agarwala, Richa ;
Bennett, Sarah F. ;
Chen, Bin ;
Chin, Ephrem L. H. ;
Compton, John G. ;
Das, Soma ;
Farkas, Daniel H. ;
Ferber, Matthew J. ;
Funke, Birgit H. ;
Furtado, Manohar R. ;
Ganova-Raeva, Lilia M. ;
Geigenmueller, Ute ;
Gunselman, Sandra J. ;
Hegde, Madhuri R. ;
Johnson, Philip L. F. ;
Kasarskis, Andrew ;
Kulkarni, Shashikant ;
Lenk, Thomas ;
Liu, C. S. Jonathan ;
Manion, Megan ;
Manolio, Teri A. ;
Mardis, Elaine R. ;
Merker, Jason D. ;
Rajeevan, Mangalathu S. ;
Reese, Martin G. ;
Rehm, Heidi L. ;
Simen, Birgitte B. ;
Yeakley, Joanne M. ;
Zook, Justin M. ;
Lubin, Ira M. .
NATURE BIOTECHNOLOGY, 2012, 30 (11) :1033-1036
[5]   Oversight of US genetic testing laboratories [J].
Hudson, Kathy L. ;
Murphy, Juli A. ;
Kaufman, David J. ;
Javitt, Gail H. ;
Katsanis, Sara H. ;
Scott, Joan .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1083-1090
[6]   INNOVATION TALENs: a widely applicable technology for targeted genome editing [J].
Joung, J. Keith ;
Sander, Jeffry D. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (01) :49-55
[7]   Current Landscape and New Paradigms of Proficiency Testing and External Quality Assessment for Molecular Genetics [J].
Kalman, Lisa V. ;
Lubin, Ira M. ;
Barker, Shannon ;
du Sart, Desiree ;
Elles, Rob ;
Grody, Wayne W. ;
Pazzagli, Mario ;
Richards, Sue ;
Schrijver, Iris ;
Zehnbauer, Barbara .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2013, 137 (07) :983-998
[8]   Using the Cre/lox system for targeted integration into the human genome: loxFAS-loxP pairing and delayed introduction of Cre DNA improve gene swapping efficiency [J].
Lanza, Amanda M. ;
Dyess, Timothy J. ;
Alper, Hal S. .
BIOTECHNOLOGY JOURNAL, 2012, 7 (07) :898-908
[9]   The Sequence Alignment/Map format and SAMtools [J].
Li, Heng ;
Handsaker, Bob ;
Wysoker, Alec ;
Fennell, Tim ;
Ruan, Jue ;
Homer, Nils ;
Marth, Gabor ;
Abecasis, Goncalo ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (16) :2078-2079
[10]   The $1,000 genome, the $100,000 analysis? [J].
Mardis, Elaine R. .
GENOME MEDICINE, 2010, 2