The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells

被引:15
作者
Hamula, Camille L. A. [1 ,2 ]
Peng, Hanyong [1 ]
Wang, Zhixin [1 ]
Newbigging, Ashley M. [1 ]
Tyrrell, Gregory J. [3 ,4 ]
Li, Xing-Fang [1 ]
Le, X. Chris [1 ]
机构
[1] Univ Alberta, Fac Med & Dent, Dept Lab Med & Pathol, Div Analyt & Environm Toxicol, Edmonton, AB T6G 2G3, Canada
[2] Mt Sinai Hosp, Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[3] Walter Mackenzie Hlth Sci Ctr, Prov Lab Publ Hlth Alberta, Edmonton, AB T6G 2J2, Canada
[4] Univ Alberta, Walter Mackenzie Hlth Sci Ctr 2B3 08, Dept Lab Med & Pathol, Edmonton, AB T6G 2B7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Aptamer; Cell-SELEX; Lactobacillus acidophilus; Streptococcus pyogenes; Bacteria; IN-VITRO SELECTION; GROUP-A STREPTOCOCCUS; DNA APTAMERS; EXPONENTIAL ENRICHMENT; SYSTEMATIC EVOLUTION; STAPHYLOCOCCUS-AUREUS; PROTEIN; LIGANDS; CANCER; IDENTIFICATION;
D O I
10.1007/s00239-015-9711-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aptamers of high affinity and specificity have a wide range of analytic and clinical applications. Selection of DNA or RNA aptamer molecules usually involves systematic evolution of ligands via exponential enrichment (SELEX), in which a random DNA or RNA library is incubated with a target molecule, and the oligonucleotides that bind the target are then separated from the nonbinders, PCR amplified, and used as refined libraries in the next round of selection. Conventional SELEX methodologies require the use of purified target molecules and their immobilization onto a solid support. However, purified targets from cells are not always available, and fixing the target to a support may alter its conformation. To overcome these problems, we have developed a SELEX technique using live bacterial cells in suspension as targets, for selecting DNA aptamers specific to cell-surface molecules. Through the selection of aptamers binding to Lactobacillus acidophilus and Streptococcus pyogenes, we report here optimization of this technique and show how varying selection conditions impact the characteristics of resultant aptamer pools, including the binding affinity, selectivity, and the secondary structures. We found that the use of larger starting library sequence diversity, gel purification of the subsequent pools, and the introduction of counter-selection resulted in a more efficient SELEX process and more selective aptamers. A SELEX protocol with lower starting sequence diversity, the use of heat denaturation, and the absence of counter-selection still resulted in high-affinity aptamer sequences specific to the target cell types; however, the SELEX process was inefficient, requiring 20 rounds, and the aptamers were not specific to the strain of the bacterial cells. Strikingly, two different SELEX methodologies yielded the same sequence that bound strongly to the target S. pyogenes cells, suggesting the robustness of the bacterial cell-SELEX technique.
引用
收藏
页码:194 / 209
页数:16
相关论文
共 51 条
[21]   Selection of aptamers against live bacterial cells [J].
Hamula, Camille L. A. ;
Zhang, Hongquan ;
Guan, Le Luo ;
Li, Xing-Fang ;
Le, X. Chris .
ANALYTICAL CHEMISTRY, 2008, 80 (20) :7812-7819
[22]   Aptamers Overview: Selection, Features and Applications [J].
Hernandez, Luiza I. ;
Machado, Isabel ;
Schaefer, Thomas ;
Hernandez, Frank J. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2015, 15 (12) :1066-1081
[23]   Tenascin-C aptamers are generated using tumor cells and purified protein [J].
Hicke, BJ ;
Marion, C ;
Chang, YF ;
Gould, T ;
Lynott, CK ;
Parma, D ;
Schmidt, PG ;
Warren, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :48644-48654
[24]   A DNA APTAMER THAT BINDS ADENOSINE AND ATP [J].
HUIZENGA, DE ;
SZOSTAK, JW .
BIOCHEMISTRY, 1995, 34 (02) :656-665
[25]   Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores [J].
Ikanovic, Milada ;
Rudzinski, Walter E. ;
Bruno, John G. ;
Allman, Amity ;
Carrillo, Maria P. ;
Dwarakanath, Sulatha ;
Bhahdigadi, Suneetha ;
Rao, Poornima ;
Kiel, Johnathan L. ;
Andrews, Carrie J. .
JOURNAL OF FLUORESCENCE, 2007, 17 (02) :193-199
[26]   Aptamer-based sensor arrays for the detection and quantitation of proteins [J].
Kirby, R ;
Cho, EJ ;
Gehrke, B ;
Bayer, T ;
Park, YS ;
Neikirk, DP ;
McDevitt, JT ;
Ellington, AD .
ANALYTICAL CHEMISTRY, 2004, 76 (14) :4066-4075
[27]   Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen [J].
Lee, Seram ;
Kim, Young Sook ;
Jo, Minjung ;
Jin, Moonsoo ;
Lee, Dong-ki ;
Kim, Soyoun .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 358 (01) :47-52
[28]   Aptamers Facilitating Amplified Detection of Biomolecules [J].
Li, Feng ;
Zhang, Hongquan ;
Wang, Zhixin ;
Newbigging, Ashley M. ;
Reid, Michael S. ;
Li, Xing-Fang ;
Le, X. Chris .
ANALYTICAL CHEMISTRY, 2015, 87 (01) :274-292
[29]   In Vitro Selection of DNA Aptamers for Metastatic Breast Cancer Cell Recognition and Tissue Imaging [J].
Li, Xilan ;
Zhang, Weiyun ;
Liu, Lu ;
Zhu, Zhi ;
Ouyang, Gaoliang ;
An, Yuan ;
Zhao, Chunyi ;
Yang, Chaoyong James .
ANALYTICAL CHEMISTRY, 2014, 86 (13) :6596-6603
[30]   Nucleic acid aptamers in cancer research, diagnosis and therapy [J].
Ma, Haitao ;
Liu, Jinping ;
Ali, M. Monsur ;
Mahmood, M. Arif Iftakher ;
Labanieh, Louai ;
Lu, Mengrou ;
Iqbal, Samir M. ;
Zhang, Qun ;
Zhao, Weian ;
Wan, Yuan .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (05) :1240-1256