Schrodinger flows, binormal motion for curves and the second AKNS-hierarchies

被引:56
作者
Ding, Q [1 ]
Inoguchi, J
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Utsunomiya Univ, Dept Math Educ, Utsunomiya, Tochigi 3218505, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/j.chaos.2003.12.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a unified geometric interpretation of the second AKNS-hierarchies via the geometric concept of Schrodinger flows in the category of symplectic manifolds and binormal motion for curves in the Minkowski 3-space. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:669 / 677
页数:9
相关论文
共 24 条
[1]  
Ablowitz M.J., 1992, LONDON MATH SOC LECT, V149
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
Chang NH, 2000, COMMUN PUR APPL MATH, V53, P590
[4]  
CHERN SS, 1986, STUD APPL MATH, V74, P55
[5]   The gauge equivalence of the NLS and the Schrodinger flow of maps in 2+1 dimensions [J].
Ding, Q .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (27) :5087-5096
[6]   A note on the NLS and the Schrodinger flow of maps [J].
Ding, Q .
PHYSICS LETTERS A, 1998, 248 (01) :49-56
[7]  
Ding Q, 2002, SCI CHINA SER A, V45, P1225
[8]  
DING Q, UNPUB HASIMOTO SURFA
[9]   Schrodinger flow of maps into symplectic manifolds [J].
Ding, WY ;
Wang, YD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (07) :746-755
[10]  
Faddeev L. D., 1987, HAMILTONIAN METHODS