Solitary waves with prescribed speed on infinite lattices

被引:125
作者
Smets, D
Willem, M
机构
[1] Dept. de Mathématiques, Univ.́ Catholique de Louvain, B-1348 Louvain-la-Neuve, 2, Chaussée du Cyclotron
关键词
D O I
10.1006/jfan.1996.3121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a variant of the mountain pass theorem, we prove the existence of solitary waves with prescribed speed on infinite lattices of particles with nearest neighbor interaction. The problem is to solve a second-order forward-backward differential difference equation. (C) 1997 Academic Press.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 11 条
[1]   Periodic motions of an infinite lattice of particles with nearest neighbor interaction [J].
Arioli, G ;
Gazzola, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (06) :1103-1114
[2]   Existence and numerical approximation of periodic motions of an infinite lattice of particles [J].
Arioli, G ;
Gazzola, F .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (06) :898-912
[3]  
ARIOLI G, IN PRESS MATH Z
[4]  
Berestycki H., 1995, Nonlinear Differ Equ Appl, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[5]  
BREZIS H, UNPUB NONLINEAR FUNC
[6]  
Fermi E, 1995, LA1940
[7]   EXISTENCE THEOREM FOR SOLITARY WAVES ON LATTICES [J].
FRIESECKE, G ;
WATTIS, JAD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) :391-418
[8]   ON THE LOWEST EIGENVALUE OF THE LAPLACIAN FOR THE INTERSECTION OF 2 DOMAINS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :441-448
[9]   ON PERIODIC MOTIONS OF LATTICES OF TODA TYPE VIA CRITICAL-POINT THEORY [J].
RUF, B ;
SRIKANTH, PN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (04) :369-385
[10]  
Toda M., 1989, THEORY NONLINEAR LAT, DOI DOI 10.1007/978-3-642-83219-2