Geometric Approach to Measure-Based Metric in Image Segmentation

被引:1
作者
Kluzner, Vladimir [1 ]
Wolansky, Gershon [2 ]
Zeevi, Yehoshua Y. [3 ]
机构
[1] Univ Haifa, IBM Haifa Res Lab, IBM Corp, IL-31905 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
Image segmentation; Measure-based metric; Geometric functional; Gamma-convergence; Minimal surfaces; ACTIVE CONTOURS; EDGE-DETECTION; SPACE; MODEL;
D O I
10.1007/s10851-008-0119-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mumford-Shah functional and related algorithms for image segmentation involve a tradeoff between a two-dimensional image structure and one-dimensional parametric curves (contours) that surround objects or distinct regions in the image. We propose an alternative functional that is independent of parameterization; it is a geometric functional given in terms of the surfaces representing the data and image in the feature space. The I"-convergence technique is combined with the minimal surfaces theory to yield a global generalization of the Mumford-Shah segmentation function.
引用
收藏
页码:360 / 378
页数:19
相关论文
共 49 条