Adversarial Robustness Guarantees for Classification with Gaussian Processes

被引:0
|
作者
Blaas, Arno [1 ]
Patane, Andrea [2 ]
Laurenti, Luca [2 ]
Cardelli, Luca [2 ]
Kwiatkowska, Marta [2 ]
Roberts, Stephen [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate adversarial robustness of Gaussian Process Classification (GPC) models. Given a compact subset of the input space T subset of R-d enclosing a test point x* and a GPC trained on a dataset D, we aim to compute the minimum and the maximum classification probability for the GPC over all the points in T. In order to do so, we show how functions lower- and upper-bounding the GPC output in T can be derived, and implement those in a branch and bound optimisation algorithm. For any error threshold epsilon > 0 selected a priori, we show that our algorithm is guaranteed to reach values epsilon-close to the actual values in finitely many iterations. We apply our method to investigate the robustness of GPC models on a 2D synthetic dataset, the SPAM dataset and a subset of the MNIST dataset, providing comparisons of different GPC training techniques, and show how our method can be used for interpretability analysis. Our empirical analysis suggests that GPC robustness increases with more accurate posterior estimation.
引用
收藏
页码:3372 / 3381
页数:10
相关论文
共 50 条
  • [41] Robustness and Transferability of Adversarial Attacks on Different Image Classification Neural Networks
    Smagulova, Kamilya
    Bacha, Lina
    Fouda, Mohammed E.
    Kanj, Rouwaida
    Eltawil, Ahmed
    ELECTRONICS, 2024, 13 (03)
  • [42] Improving Adversarial Robustness With Adversarial Augmentations
    Chen, Chuanxi
    Ye, Dengpan
    He, Yiheng
    Tang, Long
    Xu, Yue
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 5105 - 5117
  • [43] Extrinsic Gaussian Processes for Regression and Classification on Manifolds
    Lin, Lizhen
    Mu, Niu
    Cheung, Pokman
    Dunson, David
    BAYESIAN ANALYSIS, 2019, 14 (03): : 887 - 906
  • [44] Mean field methods for classification with Gaussian processes
    Opper, M
    Winther, O
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 309 - 315
  • [45] One-Class Classification with Gaussian Processes
    Kemmler, Michael
    Rodner, Erik
    Denzler, Joachim
    COMPUTER VISION - ACCV 2010, PT II, 2011, 6493 : 489 - 500
  • [46] One-class classification with Gaussian processes
    Kemmler, Michael
    Rodner, Erik
    Wacker, Esther-Sabrina
    Denzler, Joachim
    PATTERN RECOGNITION, 2013, 46 (12) : 3507 - 3518
  • [47] Evaluation of Deep Gaussian Processes for Text Classification
    Jayashree, P.
    Srijith, P. K.
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 1485 - 1491
  • [48] Adversarial Robustness for Code
    Bielik, Pavol
    Vechev, Martin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [49] Adversarial Robustness Curves
    Goepfert, Christina
    Goepfert, Jan Philip
    Hammer, Barbara
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 172 - 179
  • [50] The Adversarial Robustness of Sampling
    Ben-Eliezer, Omri
    Yogev, Eylon
    PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2020, : 49 - 62