Sensing mechanism of SnO2(110) surface to H2: Density functional theory calculations

被引:57
作者
Chen, Yanping [1 ]
Wang, Xiaofeng [1 ,2 ]
Shi, Changmin [1 ]
Li, Ling [1 ]
Qin, Hongwei [1 ]
Hu, Jifan [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Dalian Univ Technol Panjin, Sch Sci, Panjin 124221, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas sensor; SnO2; H-2; Sensing mechanism; DFT; HYDROGEN DETECTION; CARBON-MONOXIDE; GAS SENSOR; TIO2; FILM; SNO2; CO; SENSITIVITY; OXIDE;
D O I
10.1016/j.snb.2015.05.061
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Using density functional theory, we investigate the H-2-sensing mechanism of SnO2(1 1 0) surfaces to understand the H-2-sensing behaviors of SnO2 surfaces with different reduction degrees and their sensing mechanism at the atomic level. We found that oxygen concentration in the ambient atmosphere greatly affects the H-2-sensing mechanism of SnO2 surface. At considerable high oxygen concentrations H-2 interacts with oxygen species pre-adsorbed onto SnO2(1 1 0) surface, leading to electron release back to the semiconductor SnO2. When interacting with O-2(-), H-2 gas dissociates with one H atom to form hydroxyl adsorbed onto Sn site and another H atom adsorbed onto the oxygen atom of pre-adsorbed O-2(-); when interacting with the O-, H2O molecule is formed in the production. At very low oxygen concentration, structural reconstruction is induced by the interaction between H-2 and SnO2 sub-reduced surface with removed twofold-coordinated bridging oxygen rows, accompanying electron transfer from H-2 to surface without H2O formation. The above-calculated results are consistent with the experimental observation. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 52 条
[1]   Hydrothermally treated sol solution of tin oxide for thin-film gas sensor [J].
Baik, NS ;
Sakai, G ;
Miura, N ;
Yamazoe, N .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 63 (1-2) :74-79
[2]   Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds [J].
Barsan, N. ;
Huebner, M. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :510-517
[3]   Design and performance of a microcantilever-based hydrogen sensor [J].
Baselt, DR ;
Fruhberger, B ;
Klaassen, E ;
Cemalovic, S ;
Britton, CL ;
Patel, SV ;
Mlsna, TE ;
McCorkle, D ;
Warmack, B .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 88 (02) :120-131
[4]   Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications [J].
Boon-Brett, L. ;
Bousek, J. ;
Black, G. ;
Moretto, P. ;
Castello, P. ;
Huebert, T. ;
Banach, U. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (01) :373-384
[5]   Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part II - selected sensor test results [J].
Boon-Brett, L. ;
Bousek, J. ;
Moretto, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) :562-571
[6]   Comparative periodic and cluster ab initio study on Cu2O(111)/CO [J].
Bredow, T ;
Pacchioni, G .
SURFACE SCIENCE, 1997, 373 (01) :21-32
[7]   Analysis of electronic contributions to the vibrational frequency of CO/Cu2O(111) [J].
Bredow, T ;
Márquez, AM ;
Pacchioni, G .
SURFACE SCIENCE, 1999, 430 (1-3) :137-145
[8]   An overview of hydrogen safety sensors and requirements [J].
Buttner, William J. ;
Post, Matthew B. ;
Burgess, Robert ;
Rivkin, Carl .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) :2462-2470
[9]  
Chen Wei-Chun, 2012, J NANOMATE, V2012, P1, DOI DOI 10.1016/J.CATT0D.2007.10.089
[10]   Pd-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT)-based hydrogen sensor [J].
Cheng, CC ;
Tsai, YY ;
Lin, KW ;
Chen, HI ;
Hsu, WH ;
Hung, CW ;
Liu, RC ;
Liu, WC .
IEEE SENSORS JOURNAL, 2006, 6 (02) :287-292