A Mathematical Theory of Fame

被引:11
作者
Simkin, M. V. [1 ]
Roychowdhury, V. P. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Fame achievement stochastic;
D O I
10.1007/s10955-012-0677-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study empirically how the fame of WWI fighter-pilot aces, measured in numbers of web pages mentioning them, is related to their achievement, measured in numbers of opponent aircraft destroyed. We find that on the average fame grows exponentially with achievement; the correlation coefficient between achievement and the logarithm of fame is 0.72. The number of people with a particular level of achievement decreases exponentially with the level, leading to a power-law distribution of fame. We propose a stochastic model that can explain the exponential growth of fame with achievement. Next, we hypothesize that the same functional relation between achievement and fame that we found for the aces holds for other professions. This allows us to estimate achievement for professions where an unquestionable and universally accepted measure of achievement does not exist. We apply the method to Nobel Prize winners in Physics. For example, we obtain that Paul Dirac, who is a hundred times less famous than Einstein contributed to physics only two times less. We compare our results with Landau's ranking.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 15 条
[1]  
Baez J., THE BOGDANOFF AFFAIR
[2]   How famous is a scientist? Famous to those who know us [J].
Bagrow, JP ;
Rozenfeld, HD ;
Bollt, EM ;
Ben-Avraham, D .
EUROPHYSICS LETTERS, 2004, 67 (04) :511-516
[3]  
Dawkins R., 1976, The selfish gene
[4]  
Garfield Eugene., 1979, CITATION INDEXING
[5]  
Ginzburg V.L., 2005, ABOUT SCIENCE MYSELF
[6]   Do More Expensive Wines Taste Better? Evidence from a Large Sample of Blind Tastings [J].
Goldstein, Robin ;
Almenberg, Johan ;
Drebe, Anna ;
Emerson, John W. ;
Herschkowitsch, Alexis ;
Katz, Jacob .
JOURNAL OF WINE ECONOMICS, 2008, 3 (01) :1-9
[7]  
LIVANOVA A, 1983, LANDAU
[8]  
Schulman E., 2001, HOW SHOULD FAME BE M
[9]  
Schulman E., 1999, ANN IMPROBABLE RES, V5, P16
[10]  
Simkin M, 2011, SIGNIFICANCE, V8, P22, DOI DOI 10.1111/J.1740-9713.2011.00473.X