Non-linear coupled CNN models for multiscale image analysis

被引:17
作者
Corinto, F [1 ]
Biey, M [1 ]
Gilli, M [1 ]
机构
[1] Politecn Torino, Dept Elect, I-10129 Turin, Italy
关键词
polynomial cellular nonlinear networks; partial differential equations (PDE'S); PeronaMalik models; edge enhancement;
D O I
10.1002/cta.343
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs, for approximating a large class of non-linear isotropic and/or anisotropic PDEs. The global dynamics of space-discrete polynomial CNN models is analysed and compared with the dynamic behaviour of the corresponding space-continuous PDE models. It is shown that in the isotropic case the two models are not topologically equivalent; in particular, discrete CNN models allow one to obtain the output image without stopping the image evolution after a given time (scale). This property represents an advantage with respect to continuous PDE models and could simplify some image preprocessing algorithms. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 14 条
  • [1] AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING
    ALVAREZ, L
    GUICHARD, F
    LIONS, PL
    MOREL, JM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) : 199 - 257
  • [2] IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION
    CATTE, F
    LIONS, PL
    MOREL, JM
    COLL, T
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) : 182 - 193
  • [3] Chua L.-O., 2002, Cellular neural networks and visual computing: foundations and applications
  • [4] CELLULAR NEURAL NETWORKS - APPLICATIONS
    CHUA, LO
    YANG, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1273 - 1290
  • [5] CELLULAR NEURAL NETWORKS - THEORY
    CHUA, LO
    YANG, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1257 - 1272
  • [6] THE CNN PARADIGM
    CHUA, LO
    ROSKA, T
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (03) : 147 - 156
  • [7] CNN universal chips crank up the computing power
    Chua, LO
    Roska, T
    Kozek, T
    Zarandy, A
    [J]. IEEE CIRCUITS AND DEVICES MAGAZINE, 1996, 12 (04): : 18 - 28
  • [8] CNN dynamics represents a broader class than PDES
    Gilli, M
    Roska, T
    Chua, LO
    Civalleri, PP
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2051 - 2068
  • [9] SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION
    PERONA, P
    MALIK, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) : 629 - 639
  • [10] CNN architectures for constrained diffusion based locally adaptive image processing
    Rekeczky, C
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2002, 30 (2-3) : 313 - 348