Root-mean-square gains of switched linear systems: A variational approach

被引:57
|
作者
Margaliot, Michael [1 ]
Hespanha, Joao P. [2 ]
机构
[1] Tel Aviv Univ, Sch Elect Eng Syst, IL-69978 Tel Aviv, Israel
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
switched and hybrid systems; bilinear control systems; optimal control; maximum principle; algebraic Riccati equation; differential Riccati equation; Hamilton-Jacobi-Bellman equation;
D O I
10.1016/j.automatica.2008.01.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of computing the root-mean-square (RMS) gain of switched linear systems. We develop a new approach which is based on an attempt to characterize the "worst-case" switching law (WCSL), that is, the switching law that yields the maximal possible gain. Our main result provides a sufficient condition guaranteeing that the WCSL can be characterized explicitly using the differential Riccati equations (DREs) corresponding to the linear subsystems. This condition automatically holds for first-order SISO systems, so we obtain a complete solution to the RMS gain problem in this case. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2398 / 2402
页数:5
相关论文
共 50 条
  • [1] Root-mean-square gains of switched linear systems: A variational approach
    Margaliot, Michael
    Hespanha, Joao P.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 386 - 391
  • [2] Root-mean-square gains of switched linear systems
    Hespanha, JP
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (11) : 2040 - 2045
  • [3] Computation of root-mean-square gains of switched linear systems
    Hespanha, JP
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2002, 2289 : 239 - 252
  • [4] STABILITY IN ROOT-MEAN-SQUARE OF LINEAR-SYSTEMS WITH RANDOM PARAMETERS
    ALEKSEEV, VM
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (04): : 792 - &
  • [5] Measurement of the root-mean-square width and the root-mean-square chirp in ultrafast optics
    Sorokin, E
    Tempea, G
    Brabec, T
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (01) : 146 - 150
  • [6] GETTING TO THE ROOT OF ROOT-MEAN-SQUARE
    WATT, J
    ELECTRONICS & WIRELESS WORLD, 1986, 92 (1610): : 49 - 50
  • [7] ROOT-MEAN-SQUARE EMITTANCE OF MULTIPLE BEAM SYSTEMS
    RHEE, MJ
    BOULAIS, KA
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (07): : 1781 - 1786
  • [8] ROOT-MEAN-SQUARE MICRODEFORMATIONS IN PYROCARBON
    KASATOCHKIN, VI
    KHOMENKO, AA
    ROLBIN, YA
    SMIRNOV, YE
    DOKLADY AKADEMII NAUK SSSR, 1970, 191 (06): : 1319 - +
  • [9] THE ROOT-MEAN-SQUARE RADIUS OF THE DEUTERON
    ALLEN, LJ
    MCTAVISH, JP
    KERMODE, MW
    MCKERRELL, A
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1981, 7 (10) : 1367 - 1377
  • [10] Linear array antennas with the minimum root-mean-square sidelobe level
    L. G. Sodin
    Journal of Communications Technology and Electronics, 2006, 51 : 796 - 803