Heat transfer in infinite harmonic one-dimensional crystals

被引:49
|
作者
Krivtsov, A. M. [1 ,2 ]
机构
[1] St Petersburg State Polytech Univ, St Petersburg, Russia
[2] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 196140, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Heat Flux; Kinetic Temperature; Hyperbolic Heat Conduction; Initial Temperature Distribution; General Analytical Solution;
D O I
10.1134/S1028335815090062
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A closed system of differential-difference equations describing thermal processes in one-dimensional harmonic crystals is obtained in the paper. An equation connecting the heat flow and the kinetic temperature is obtained as a solution of the system. The obtained law of heat conduction is different from Fourier's law and results in an equation that combines properties of the standard heat equation and the wave equation. The resulting equation is an analytic consequence from the dynamical equations for the particles in the crystal. Unlike equations of hyperbolic heat conduction, this equation is time-reversible and has only one independent parameter. A general analytical solution of this differential equations is obtained, and the analytical results are confirmed by computer simulations.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 50 条
  • [31] Maximum scaling of Second-Harmonic Generation in One-dimensional Photonic Crystals
    Liscidini, M.
    Locatelli, A.
    De Angelis, C.
    Andreani, L. C.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3018 - +
  • [32] A way for enhancing second harmonic generation in one-dimensional nonlinear photonic crystals
    Zhao, Li-Ming
    Gu, Ben-Yuan
    Zhou, Yun-Song
    OPTICS COMMUNICATIONS, 2008, 281 (10) : 2954 - 2958
  • [33] Optical third-harmonic generation in one-dimensional photonic crystals and microcavities
    M. G. Martemyanov
    T. V. Dolgova
    A. A. Fedyanin
    Journal of Experimental and Theoretical Physics, 2004, 98 : 463 - 477
  • [34] Resonant ensembles of stationary quasi-harmonic waves in one-dimensional crystals
    Kovriguine, D. A.
    Nikitenkova, S. P.
    ACOUSTICAL PHYSICS, 2015, 61 (05) : 511 - 526
  • [35] Resonant ensembles of stationary quasi-harmonic waves in one-dimensional crystals
    D. A. Kovriguine
    S. P. Nikitenkova
    Acoustical Physics, 2015, 61 : 511 - 526
  • [36] Second harmonic generation from an antiferromagnetic film in one-dimensional photonic crystals
    Zhou, Sheng
    Li, Hua
    Fu, Shu-Fang
    Wang, Xuan-Zhang
    PHYSICAL REVIEW B, 2009, 80 (20)
  • [37] Optical third-harmonic generation in one-dimensional photonic crystals and microcavities
    Martemyanov, MG
    Dolgova, TV
    Fedyanin, AA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 98 (03) : 463 - 477
  • [38] One-dimensional numerical simulations of heat transfer on the piston effect
    Wu, Songzi
    INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND INDUSTRIAL APPLICATIONS (FMIA 2017), 2017, 916
  • [39] ONE-DIMENSIONAL NONUNIFORM TEMPERATURE FLOW WITH HEAT TRANSFER BY CONVECTION
    袁镒吾
    AppliedMathematicsandMechanics(EnglishEdition), 1985, (03) : 259 - 268
  • [40] One-dimensional analysis of oscillatory heat transfer in a fin assembly
    Houghton, J.M.
    Ingham, D.B.
    Heggs, P.J.
    Journal of Heat Transfer, 1992, 114 (03): : 548 - 552