Squashing models for optical measurements in quantum communication

被引:123
作者
Beaudry, Normand J. [1 ]
Moroder, Tobias [1 ,2 ,3 ]
Lutkenhaus, Norbert [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Erlangen Nurnberg, Inst Theoret Phys 1, Quantum Informat Theory Grp, Erlangen, Germany
[3] Univ Erlangen Nurnberg, Inst Opt Photon & Informat, Max Planck Res Grp, Erlangen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevLett.101.093601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurements with photodetectors are naturally described in the infinite dimensional Fock space of one or several modes. For some measurements, a model has been postulated which describes the full measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert space followed by a specified target measurement. We present a formalism to investigate whether a given measurement pair of full and target measurements can be connected by a squashing model. We show that a measurement used in the Bennett-Brassard 1984 (131384) protocol does allow a squashing description, although the corresponding six-state protocol measurement does not. As a result, security proofs for the BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while the same does not hold for the six-state protocol.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[2]  
Bengtsson I., 2017, Geometry of quantum states: an introduction to quantum entanglement, V2nd, DOI DOI 10.1017/9781139207010
[3]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[4]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[5]   Optimum quantum error recovery using semidefinite programming [J].
Fletcher, Andrew S. ;
Shor, Peter W. ;
Win, Moe Z. .
PHYSICAL REVIEW A, 2007, 75 (01)
[6]  
Jamiolkowski A., 1972, Rep. Math. Phys., V3, P275, DOI [DOI 10.1016/0034-4877(72)90011-0, 10.1016/0034-4877(72)90011-0]
[7]  
Lütkenhaus N, 2000, PHYS REV A, V61, DOI 10.1103/PhysRevA.61.052304
[8]   Estimates for practical quantum cryptography [J].
Lütkenhaus, N .
PHYSICAL REVIEW A, 1999, 59 (05) :3301-3319
[9]   Quantum key distribution with entangled photon sources [J].
Ma, Xiongfeng ;
Fung, Chi-Hang Fred ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 76 (01)
[10]   Iterative optimization of quantum error correcting codes [J].
Reimpell, M ;
Werner, RF .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)