Impregnated nickel anodes for reduced-temperature solid oxide fuel cells based on thin electrolytes of doped LaGaO3

被引:35
作者
Liu, Xuejiao [1 ]
Meng, Xie [1 ]
Han, Da [1 ]
Wu, Hao [1 ]
Zeng, Fanrong [1 ]
Zhan, Zhongliang [1 ]
机构
[1] Chinese Acad Sci SICCAS, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
美国国家科学基金会;
关键词
Nickel anode; Impregnation; Nanostructure; Reduced-temperature solid oxide fuel cells; Strontium- and magnesium-doped lanthanum gallate; LANTHANUM GALLATE; POWER-DENSITY; LSGM; PERFORMANCE; SOFC; STRONTIUM;
D O I
10.1016/j.jpowsour.2012.08.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly active NI-cermet anodes for thin La0.9Sr0.1Ga0.8Sr0.2O3-delta (LSGM) electrolyte solid oxide fuel cells are fabricated by impregnating aqueous nickel nitrate solutions into porous LSGM backbones, followed by calcinations at 700 degrees C. High Ni loadings, e.g., V-Ni = 7.9%, are mandatory for obtaining well-interconnected Ni coatings on the internal surfaces of the supporting LSGM structures, where good chemical compatibility is confirmed by the X-Ray diffraction patterns. The polarization resistances are impressively low for the V-Ni = 7.9% anodes in humidified hydrogen, ranging from 0.008 Omega cm(2) at 650 degrees C to 0.011 Omega cm(2) at 550 degrees C. Thin LSGM electrolyte fuel cells, impregnated with Ni anodes and Sm0.5Sr0.5CoO3-delta-Ce0.8Sm0.2O1.9 (SSC - SDC) cathodes, exhibit superior power densities at reduced temperatures, e.g., 1.60 and 1.05 W cm(-2) at 650 and 550 degrees C, respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 27 条
[1]   Performance of solid oxide fuel cells with LSGM-LSM composite cathodes [J].
Armstrong, TJ ;
Virkar, AV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1565-A1571
[2]   A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models [J].
Bessler, WG .
SOLID STATE IONICS, 2005, 176 (11-12) :997-1011
[3]   Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells [J].
Bi, ZH ;
Cheng, MJ ;
Dong, YL ;
Wu, HJ ;
She, YC ;
Yi, BL .
SOLID STATE IONICS, 2005, 176 (7-8) :655-661
[4]   A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes [J].
Bi, ZH ;
Yi, BL ;
Wang, ZW ;
Dong, YL ;
Wu, HJ ;
She, YC ;
Cheng, MJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (05) :A105-A107
[5]   Behavior of manganite electrodes in contact with LSGM electrolyte: the nature of low electrochemical activity [J].
Bronin, DI ;
Kuzin, BL ;
Yaroslavtsev, IY ;
Bogdanovich, NM .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (08) :651-658
[6]   Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells [J].
Datta, Pradyot ;
Majewski, Peter ;
Aldinger, Fritz .
MATERIALS CHEMISTRY AND PHYSICS, 2007, 102 (2-3) :125-131
[7]  
FENG M, 1994, EUR J SOL STATE INOR, V31, P663
[8]   Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte [J].
Guo, Weimin ;
Liu, Jiang ;
Zhang, Yaohui .
ELECTROCHIMICA ACTA, 2008, 53 (13) :4420-4427
[9]   A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells [J].
Han, Da ;
Liu, Xuejiao ;
Zeng, Fanrong ;
Qian, Jiqin ;
Wu, Tianzhi ;
Zhan, Zhongliang .
SCIENTIFIC REPORTS, 2012, 2
[10]   Assessment of performances of Ni-Cu-LSGM as anode materials for intermediate-temperature LaGaO3-based solid oxide fuel cells [J].
He, TM ;
Guan, PF ;
Cong, LG ;
Ji, Y ;
Sun, H ;
Wang, JX ;
Liu, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 393 (1-2) :292-298